mirror of
https://github.com/msberends/AMR.git
synced 2025-01-27 01:04:42 +01:00
kurtosis, skewness, start with ML
This commit is contained in:
parent
c768ba0d9c
commit
14b990d769
@ -1,6 +1,6 @@
|
||||
Package: AMR
|
||||
Version: 0.2.0.9008
|
||||
Date: 2018-07-04
|
||||
Version: 0.2.0.9009
|
||||
Date: 2018-07-06
|
||||
Title: Antimicrobial Resistance Analysis
|
||||
Authors@R: c(
|
||||
person(
|
||||
@ -28,6 +28,7 @@ Depends:
|
||||
R (>= 3.0.0)
|
||||
Imports:
|
||||
backports,
|
||||
broom,
|
||||
clipr,
|
||||
curl,
|
||||
dplyr (>= 0.7.0),
|
||||
|
23
NAMESPACE
23
NAMESPACE
@ -6,6 +6,11 @@ S3method(as.integer,mic)
|
||||
S3method(as.numeric,mic)
|
||||
S3method(barplot,mic)
|
||||
S3method(barplot,rsi)
|
||||
S3method(hist,frequency_tbl)
|
||||
S3method(kurtosis,data.frame)
|
||||
S3method(kurtosis,default)
|
||||
S3method(kurtosis,matrix)
|
||||
S3method(plot,frequency_tbl)
|
||||
S3method(plot,mic)
|
||||
S3method(plot,rsi)
|
||||
S3method(print,data.table)
|
||||
@ -14,6 +19,9 @@ S3method(print,mic)
|
||||
S3method(print,rsi)
|
||||
S3method(print,tbl)
|
||||
S3method(print,tbl_df)
|
||||
S3method(skewness,data.frame)
|
||||
S3method(skewness,default)
|
||||
S3method(skewness,matrix)
|
||||
S3method(summary,mic)
|
||||
S3method(summary,rsi)
|
||||
export("%like%")
|
||||
@ -43,6 +51,7 @@ export(interpretive_reading)
|
||||
export(is.mic)
|
||||
export(is.rsi)
|
||||
export(key_antibiotics)
|
||||
export(kurtosis)
|
||||
export(left_join_microorganisms)
|
||||
export(like)
|
||||
export(mo_property)
|
||||
@ -54,6 +63,7 @@ export(rsi)
|
||||
export(rsi_df)
|
||||
export(rsi_predict)
|
||||
export(semi_join_microorganisms)
|
||||
export(skewness)
|
||||
export(top_freq)
|
||||
exportMethods(as.data.frame.frequency_tbl)
|
||||
exportMethods(as.double.mic)
|
||||
@ -61,6 +71,12 @@ exportMethods(as.integer.mic)
|
||||
exportMethods(as.numeric.mic)
|
||||
exportMethods(barplot.mic)
|
||||
exportMethods(barplot.rsi)
|
||||
exportMethods(hist.frequency_tbl)
|
||||
exportMethods(kurtosis)
|
||||
exportMethods(kurtosis.data.frame)
|
||||
exportMethods(kurtosis.default)
|
||||
exportMethods(kurtosis.matrix)
|
||||
exportMethods(plot.frequency_tbl)
|
||||
exportMethods(plot.mic)
|
||||
exportMethods(plot.rsi)
|
||||
exportMethods(print.data.table)
|
||||
@ -69,8 +85,13 @@ exportMethods(print.mic)
|
||||
exportMethods(print.rsi)
|
||||
exportMethods(print.tbl)
|
||||
exportMethods(print.tbl_df)
|
||||
exportMethods(skewness)
|
||||
exportMethods(skewness.data.frame)
|
||||
exportMethods(skewness.default)
|
||||
exportMethods(skewness.matrix)
|
||||
exportMethods(summary.mic)
|
||||
exportMethods(summary.rsi)
|
||||
importFrom(broom,tidy)
|
||||
importFrom(clipr,read_clip_tbl)
|
||||
importFrom(clipr,write_clip)
|
||||
importFrom(curl,nslookup)
|
||||
@ -107,6 +128,7 @@ importFrom(dplyr,vars)
|
||||
importFrom(grDevices,boxplot.stats)
|
||||
importFrom(graphics,axis)
|
||||
importFrom(graphics,barplot)
|
||||
importFrom(graphics,hist)
|
||||
importFrom(graphics,plot)
|
||||
importFrom(graphics,text)
|
||||
importFrom(knitr,kable)
|
||||
@ -119,6 +141,7 @@ importFrom(rvest,html_nodes)
|
||||
importFrom(rvest,html_table)
|
||||
importFrom(stats,fivenum)
|
||||
importFrom(stats,mad)
|
||||
importFrom(stats,na.omit)
|
||||
importFrom(stats,pchisq)
|
||||
importFrom(stats,sd)
|
||||
importFrom(tibble,tibble)
|
||||
|
13
NEWS.md
13
NEWS.md
@ -1,10 +1,14 @@
|
||||
# 0.2.0.90xx (development version)
|
||||
#### New
|
||||
* Support for Addins menu in RStudio to quickly insert `%in%` or `%like%` (and give them keyboard shortcuts), or to view the datasets that come with this package
|
||||
* Function `top_freq` function to get the top/below *n* items of frequency tables
|
||||
* Vignette about frequency tables
|
||||
* Header of frequency tables now also show MAD and IQR
|
||||
* Possibility to globally set the default for the amount of items to print in frequency tables (`freq` function), with `options(max.print.freq = n)`
|
||||
* For convience, descriptive statistical functions `kurtosis` and `skewness` that are lacking in base R - they are generic functions and have support for vectors, data.frames and matrices
|
||||
* New for frequency tables (function `freq`):
|
||||
* A vignette to explain its usage
|
||||
* Support for existing functions `hist` and `plot` to use a frequency table as input: `hist(freq(df$age))`
|
||||
* Support for quasiquotation: `freq(mydata, mycolumn)` is the same as `mydata %>% freq(mycolumn)`
|
||||
* Function `top_freq` function to return the top/below *n* items as vector
|
||||
* Header of frequency tables now also show Mean Absolute Deviaton (MAD) and Interquartile Range (IQR)
|
||||
* Possibility to globally set the default for the amount of items to print, with `options(max.print.freq = n)` where *n* is your preset value
|
||||
* Functions `clipboard_import` and `clipboard_export` as helper functions to quickly copy and paste from/to software like Excel and SPSS
|
||||
* Function `g.test` to perform the Χ<sup>2</sup> distributed [*G*-test](https://en.wikipedia.org/wiki/G-test)
|
||||
* Function `ratio` to transform a vector of values to a preset ratio (convenient to use with `g.test`). For example:
|
||||
@ -16,7 +20,6 @@ ratio(c(772, 1611, 737), ratio = "1:2:1")
|
||||
|
||||
#### Changed
|
||||
* `%like%` now supports multiple patterns
|
||||
* Frequency tables (function `freq`) now supports quasiquotation: `freq(mydata, mycolumn)`, or `mydata %>% freq(mycolumn)`
|
||||
* Frequency tables are now actual `data.frame`s with altered console printing to make it look like a frequency table. Because of this, the parameter `toConsole` is not longer needed.
|
||||
* Small translational improvements to the `septic_patients` dataset
|
||||
* Small improvements to the `microorganisms` dataset, especially for *Salmonella*
|
||||
|
43
R/freq.R
43
R/freq.R
@ -46,8 +46,8 @@
|
||||
#'
|
||||
#' For dates and times of any class, these additional values will be calculated with \code{na.rm = TRUE} and shown into the header:
|
||||
#' \itemize{
|
||||
#' \item{Oldest, using \code{\link[base]{min}}}
|
||||
#' \item{Newest, using \code{\link[base]{max}}, with difference between newest and oldest}
|
||||
#' \item{Oldest, using \code{\link{min}}}
|
||||
#' \item{Newest, using \code{\link{max}}, with difference between newest and oldest}
|
||||
#' \item{Median, using \code{\link[stats]{median}}, with percentage since oldest}
|
||||
#' }
|
||||
#'
|
||||
@ -522,3 +522,42 @@ as.data.frame.frequency_tbl <- function(x, ...) {
|
||||
attr(x, 'opt') <- NULL
|
||||
as.data.frame.data.frame(x, ...)
|
||||
}
|
||||
|
||||
#' @noRd
|
||||
#' @exportMethod hist.frequency_tbl
|
||||
#' @export
|
||||
#' @importFrom dplyr %>% pull
|
||||
#' @importFrom graphics hist
|
||||
hist.frequency_tbl <- function(x, ...) {
|
||||
|
||||
opt <- attr(x, 'opt')
|
||||
|
||||
if (!is.null(opt$vars)) {
|
||||
title <- opt$vars
|
||||
} else {
|
||||
title <- ""
|
||||
}
|
||||
|
||||
items <- x %>% pull(item)
|
||||
counts <- x %>% pull(count)
|
||||
vect <- rep(items, counts)
|
||||
hist(vect, main = paste("Histogram of", title), xlab = title, ...)
|
||||
}
|
||||
|
||||
#' @noRd
|
||||
#' @exportMethod plot.frequency_tbl
|
||||
#' @export
|
||||
#' @importFrom dplyr %>% pull
|
||||
plot.frequency_tbl <- function(x, y, ...) {
|
||||
opt <- attr(x, 'opt')
|
||||
|
||||
if (!is.null(opt$vars)) {
|
||||
title <- opt$vars
|
||||
} else {
|
||||
title <- ""
|
||||
}
|
||||
|
||||
items <- x %>% pull(item)
|
||||
counts <- x %>% pull(count)
|
||||
plot(x = items, y = counts, ylab = "Count", xlab = title, ...)
|
||||
}
|
||||
|
@ -35,12 +35,14 @@ globalVariables(c('abname',
|
||||
'key_ab',
|
||||
'key_ab_lag',
|
||||
'key_ab_other',
|
||||
'labs',
|
||||
'median',
|
||||
'mic',
|
||||
'microorganisms',
|
||||
'mocode',
|
||||
'molis',
|
||||
'n',
|
||||
'na.omit',
|
||||
'other_pat_or_mo',
|
||||
'patient_id',
|
||||
'quantile',
|
||||
|
40
R/kurtosis.R
Normal file
40
R/kurtosis.R
Normal file
@ -0,0 +1,40 @@
|
||||
#' Kurtosis of the sample
|
||||
#'
|
||||
#' @description Kurtosis is a measure of the "tailedness" of the probability distribution of a real-valued random variable.
|
||||
#'
|
||||
#' @param x a vector of values, a \code{matrix} or a \code{data frame}
|
||||
#' @param na.rm a logical value indicating whether \code{NA} values should be stripped before the computation proceeds.
|
||||
#' @exportMethod kurtosis
|
||||
#' @seealso \code{\link{skewness}}
|
||||
#' @rdname kurtosis
|
||||
#' @export
|
||||
kurtosis <- function(x, na.rm = FALSE) {
|
||||
UseMethod("kurtosis")
|
||||
}
|
||||
|
||||
#' @exportMethod kurtosis.default
|
||||
#' @rdname kurtosis
|
||||
#' @export
|
||||
kurtosis.default <- function (x, na.rm = FALSE) {
|
||||
x <- as.vector(x)
|
||||
if (na.rm == TRUE) {
|
||||
x <- x[!is.na(x)]
|
||||
}
|
||||
n <- length(x)
|
||||
n * base::sum((x - base::mean(x, na.rm = na.rm))^4, na.rm = na.rm) /
|
||||
(base::sum((x - base::mean(x, na.rm = na.rm))^2, na.rm = na.rm)^2)
|
||||
}
|
||||
|
||||
#' @exportMethod kurtosis.matrix
|
||||
#' @rdname kurtosis
|
||||
#' @export
|
||||
kurtosis.matrix <- function (x, na.rm = FALSE) {
|
||||
base::apply(x, 2, kurtosis.default, na.rm = na.rm)
|
||||
}
|
||||
|
||||
#' @exportMethod kurtosis.data.frame
|
||||
#' @rdname kurtosis
|
||||
#' @export
|
||||
kurtosis.data.frame <- function (x, na.rm = FALSE) {
|
||||
base::sapply(x, kurtosis.default, na.rm = na.rm)
|
||||
}
|
2
R/like.R
2
R/like.R
@ -18,7 +18,7 @@
|
||||
|
||||
#' Pattern Matching
|
||||
#'
|
||||
#' Convenient wrapper around \code{\link[base]{grepl}} to match a pattern: \code{a \%like\% b}. It always returns a \code{logical} vector and is always case-insensitive. Also, \code{pattern} (\code{b}) can be as long as \code{x} (\code{a}) to compare items of each index in both vectors.
|
||||
#' Convenient wrapper around \code{\link[base]{grep}} to match a pattern: \code{a \%like\% b}. It always returns a \code{logical} vector and is always case-insensitive. Also, \code{pattern} (\code{b}) can be as long as \code{x} (\code{a}) to compare items of each index in both vectors.
|
||||
#' @inheritParams base::grepl
|
||||
#' @return A \code{logical} vector
|
||||
#' @name like
|
||||
|
40
R/skewness.R
Normal file
40
R/skewness.R
Normal file
@ -0,0 +1,40 @@
|
||||
#' Skewness of the sample
|
||||
#'
|
||||
#' @description Skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean.
|
||||
#'
|
||||
#' When negative: the left tail is longer; the mass of the distribution is concentrated on the right of the figure. When positive: the right tail is longer; the mass of the distribution is concentrated on the left of the figure.
|
||||
#' @param x a vector of values, a \code{matrix} or a \code{data frame}
|
||||
#' @param na.rm a logical value indicating whether \code{NA} values should be stripped before the computation proceeds.
|
||||
#' @exportMethod skewness
|
||||
#' @seealso \code{\link{kurtosis}}
|
||||
#' @rdname skewness
|
||||
#' @export
|
||||
skewness <- function(x, na.rm = FALSE) {
|
||||
UseMethod("skewness")
|
||||
}
|
||||
|
||||
#' @exportMethod skewness.default
|
||||
#' @rdname skewness
|
||||
#' @export
|
||||
skewness.default <- function (x, na.rm = FALSE) {
|
||||
x <- as.vector(x)
|
||||
if (na.rm == TRUE) {
|
||||
x <- x[!is.na(x)]
|
||||
}
|
||||
n <- length(x)
|
||||
(base::sum((x - base::mean(x))^3) / n) / (base::sum((x - base::mean(x))^2) / n)^(3/2)
|
||||
}
|
||||
|
||||
#' @exportMethod skewness.matrix
|
||||
#' @rdname skewness
|
||||
#' @export
|
||||
skewness.matrix <- function (x, na.rm = FALSE) {
|
||||
base::apply(x, 2, skewness.default, na.rm = na.rm)
|
||||
}
|
||||
|
||||
#' @exportMethod skewness.data.frame
|
||||
#' @rdname skewness
|
||||
#' @export
|
||||
skewness.data.frame <- function (x, na.rm = FALSE) {
|
||||
base::sapply(x, skewness.default, na.rm = na.rm)
|
||||
}
|
123
R/trends.R
Normal file
123
R/trends.R
Normal file
@ -0,0 +1,123 @@
|
||||
#' Detect trends using Machine Learning
|
||||
#'
|
||||
#' Test text
|
||||
#' @param data a \code{data.frame}
|
||||
#' @param threshold_unique do not analyse more unique \code{threshold_unique} items per variable
|
||||
#' @param na.rm a logical value indicating whether \code{NA} values should be stripped before the computation proceeds.
|
||||
#' @param info print relevant combinations to console
|
||||
#' @return A \code{list} with class \code{"trends"}
|
||||
#' @importFrom stats na.omit
|
||||
#' @importFrom broom tidy
|
||||
# @export
|
||||
trends <- function(data, threshold_unique = 30, na.rm = TRUE, info = TRUE) {
|
||||
|
||||
cols <- colnames(data)
|
||||
relevant <- list()
|
||||
count <- 0
|
||||
for (x in 1:length(cols)) {
|
||||
for (y in 1:length(cols)) {
|
||||
if (x == y) {
|
||||
next
|
||||
}
|
||||
if (n_distinct(data[, x]) > threshold_unique | n_distinct(data[, y]) > threshold_unique) {
|
||||
next
|
||||
}
|
||||
count <- count + 1
|
||||
df <- data %>%
|
||||
group_by_at(c(cols[x], cols[y])) %>%
|
||||
summarise(n = n())
|
||||
n <- df %>% pull(n)
|
||||
# linear regression model
|
||||
lin <- stats::lm(1:length(n) ~ n, na.action = ifelse(na.rm == TRUE, na.omit, NULL))
|
||||
|
||||
res <- list(
|
||||
df = df,
|
||||
x = cols[x],
|
||||
y = cols[y],
|
||||
m = base::mean(n, na.rm = na.rm),
|
||||
sd = stats::sd(n, na.rm = na.rm),
|
||||
cv = cv(n, na.rm = na.rm),
|
||||
cqv = cqv(n, na.rm = na.rm),
|
||||
kurtosis = kurtosis(n, na.rm = na.rm),
|
||||
skewness = skewness(n, na.rm = na.rm),
|
||||
lin.p = broom::tidy(lin)[2, 'p.value']
|
||||
#binom.p <- broom::tidy(binom)[2, 'p.value']
|
||||
)
|
||||
|
||||
include <- TRUE
|
||||
# ML part
|
||||
if (res$cv > 0.25) {
|
||||
res$reason <- "cv > 0.25"
|
||||
} else if (res$cqv > 0.75) {
|
||||
res$reason <- "cqv > 0.75"
|
||||
} else {
|
||||
include <- FALSE
|
||||
}
|
||||
|
||||
if (include == TRUE) {
|
||||
relevant <- c(relevant, list(res))
|
||||
if (info == TRUE) {
|
||||
# minus one because the whole data will be added later
|
||||
cat(paste0("[", length(relevant), "]"), "Relevant:", cols[x], "vs.", cols[y], "\n")
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
cat("Total of", count, "combinations analysed;", length(relevant), "seem relevant.\n")
|
||||
class(relevant) <- 'trends'
|
||||
relevant <- c(relevant, list(data = data))
|
||||
relevant
|
||||
|
||||
}
|
||||
|
||||
# @exportMethod print.trends
|
||||
# @export
|
||||
#' @noRd
|
||||
print.trends <- function(x, ...) {
|
||||
cat(length(x) - 1, "relevant trends, out of", length(x$data)^2, "\n")
|
||||
}
|
||||
|
||||
# @exportMethod plot.trends
|
||||
# @export
|
||||
#' @noRd
|
||||
# plot.trends <- function(x, n = NULL, ...) {
|
||||
# if (is.null(n)) {
|
||||
# oask <- devAskNewPage(TRUE)
|
||||
# on.exit(devAskNewPage(oask))
|
||||
# n <- c(1:(length(x) - 1))
|
||||
# } else {
|
||||
# if (n > length(x) - 1) {
|
||||
# stop('trend unavailable, max is ', length(x) - 1, call. = FALSE)
|
||||
# }
|
||||
# oask <- NULL
|
||||
# }
|
||||
# for (i in n) {
|
||||
# data <- x[[i]]$df
|
||||
# if (as.character(i) %like% '1$') {
|
||||
# suffix <- "st"
|
||||
# } else if (as.character(i) %like% '2$') {
|
||||
# suffix <- "nd"
|
||||
# } else if (as.character(i) %like% '3$') {
|
||||
# suffix <- "rd"
|
||||
# } else {
|
||||
# suffix <- "th"
|
||||
# }
|
||||
# if (!is.null(oask)) {
|
||||
# cat(paste("Coming up:", colnames(data)[1], "vs.", colnames(data)[2]), "\n")
|
||||
# }
|
||||
# print(
|
||||
# ggplot(
|
||||
# data,
|
||||
# aes_string(x = colnames(data)[1],
|
||||
# y = colnames(data)[3],
|
||||
# group = colnames(data)[2],
|
||||
# fill = colnames(data)[2])) +
|
||||
# geom_col(position = "dodge") +
|
||||
# theme_minimal() +
|
||||
# labs(title = paste(colnames(data)[1], "vs.", colnames(data)[2]),
|
||||
# subtitle = paste0(i, suffix, " trend"))
|
||||
# )
|
||||
# }
|
||||
# }
|
@ -32,7 +32,7 @@ With `AMR` you can also:
|
||||
* Get antimicrobial ATC properties from the WHO Collaborating Centre for Drug Statistics Methodology ([WHOCC](https://www.whocc.no/atc_ddd_methodology/who_collaborating_centre/)), to be able to:
|
||||
* Translate antibiotic codes (like *AMOX*), official names (like *amoxicillin*) and even trade names (like *Amoxil* or *Trimox*) to an [ATC code](https://www.whocc.no/atc_ddd_index/?code=J01CA04&showdescription=no) (like *J01CA04*) and vice versa with the `abname` function
|
||||
* Get the latest antibiotic properties like hierarchic groups and [defined daily dose](https://en.wikipedia.org/wiki/Defined_daily_dose) (DDD) with units and administration form from the WHOCC website with the `atc_property` function
|
||||
* Create frequency tables with the `freq` function
|
||||
* Conduct descriptive statistics: calculate kurtosis, skewness and create frequency tables
|
||||
|
||||
And it contains:
|
||||
* A recent data set with ~2500 human pathogenic microorganisms, including family, genus, species, gram stain and aerobic/anaerobic
|
||||
@ -41,13 +41,17 @@ And it contains:
|
||||
|
||||
With the `MDRO` function (abbreviation of Multi Drug Resistant Organisms), you can check your isolates for exceptional resistance with country-specific guidelines or EUCAST rules. Currently guidelines for Germany and the Netherlands are supported. Please suggest addition of your own country here: [https://github.com/msberends/AMR/issues/new](https://github.com/msberends/AMR/issues/new?title=New%20guideline%20for%20MDRO&body=%3C--%20Please%20add%20your%20country%20code,%20guideline%20name,%20version%20and%20source%20below%20and%20remove%20this%20line--%3E).
|
||||
|
||||
#### Read all changes and new functions in [NEWS.md](NEWS.md).
|
||||
|
||||
## How to get it?
|
||||
This package is available on CRAN and also here on GitHub.
|
||||
|
||||
### From CRAN (recommended)
|
||||
[![CRAN_Badge](https://img.shields.io/cran/v/AMR.svg?label=CRAN&colorB=3679BC)](http://cran.r-project.org/package=AMR)
|
||||
|
||||
Downloads via RStudio CRAN server (downloads by all other CRAN mirrors not measured):
|
||||
[![CRAN_Downloads](https://cranlogs.r-pkg.org/badges/grand-total/AMR)](http://cran.r-project.org/package=AMR)
|
||||
[![CRAN_Downloads](https://cranlogs.r-pkg.org/badges/AMR)](http://cran.r-project.org/package=AMR)
|
||||
[![CRAN_Downloads](https://cranlogs.r-pkg.org/badges/AMR)](https://cranlogs.r-pkg.org/downloads/daily/last-month/AMR)
|
||||
|
||||
- <img src="http://www.rstudio.com/favicon.ico" alt="RStudio favicon" height="20px"> In [RStudio](http://www.rstudio.com) (recommended):
|
||||
- Click on `Tools` and then `Install Packages...`
|
||||
|
@ -66,8 +66,8 @@ For numeric values of any class, these additional values will all be calculated
|
||||
|
||||
For dates and times of any class, these additional values will be calculated with \code{na.rm = TRUE} and shown into the header:
|
||||
\itemize{
|
||||
\item{Oldest, using \code{\link[base]{min}}}
|
||||
\item{Newest, using \code{\link[base]{max}}, with difference between newest and oldest}
|
||||
\item{Oldest, using \code{\link{min}}}
|
||||
\item{Newest, using \code{\link{max}}, with difference between newest and oldest}
|
||||
\item{Median, using \code{\link[stats]{median}}, with percentage since oldest}
|
||||
}
|
||||
|
||||
|
28
man/kurtosis.Rd
Normal file
28
man/kurtosis.Rd
Normal file
@ -0,0 +1,28 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/kurtosis.R
|
||||
\name{kurtosis}
|
||||
\alias{kurtosis}
|
||||
\alias{kurtosis.default}
|
||||
\alias{kurtosis.matrix}
|
||||
\alias{kurtosis.data.frame}
|
||||
\title{Kurtosis of the sample}
|
||||
\usage{
|
||||
kurtosis(x, na.rm = FALSE)
|
||||
|
||||
\method{kurtosis}{default}(x, na.rm = FALSE)
|
||||
|
||||
\method{kurtosis}{matrix}(x, na.rm = FALSE)
|
||||
|
||||
\method{kurtosis}{data.frame}(x, na.rm = FALSE)
|
||||
}
|
||||
\arguments{
|
||||
\item{x}{a vector of values, a \code{matrix} or a \code{data frame}}
|
||||
|
||||
\item{na.rm}{a logical value indicating whether \code{NA} values should be stripped before the computation proceeds.}
|
||||
}
|
||||
\description{
|
||||
Kurtosis is a measure of the "tailedness" of the probability distribution of a real-valued random variable.
|
||||
}
|
||||
\seealso{
|
||||
\code{\link{skewness}}
|
||||
}
|
@ -29,7 +29,7 @@ x \%like\% pattern
|
||||
A \code{logical} vector
|
||||
}
|
||||
\description{
|
||||
Convenient wrapper around \code{\link[base]{grepl}} to match a pattern: \code{a \%like\% b}. It always returns a \code{logical} vector and is always case-insensitive. Also, \code{pattern} (\code{b}) can be as long as \code{x} (\code{a}) to compare items of each index in both vectors.
|
||||
Convenient wrapper around \code{\link[base]{grep}} to match a pattern: \code{a \%like\% b}. It always returns a \code{logical} vector and is always case-insensitive. Also, \code{pattern} (\code{b}) can be as long as \code{x} (\code{a}) to compare items of each index in both vectors.
|
||||
}
|
||||
\details{
|
||||
Using RStudio? This function can also be inserted from the Addins menu and can have its own Keyboard Shortcut like Ctrl+Shift+L or Cmd+Shift+L (see Tools > Modify Keyboard Shortcuts...).
|
||||
|
30
man/skewness.Rd
Normal file
30
man/skewness.Rd
Normal file
@ -0,0 +1,30 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/skewness.R
|
||||
\name{skewness}
|
||||
\alias{skewness}
|
||||
\alias{skewness.default}
|
||||
\alias{skewness.matrix}
|
||||
\alias{skewness.data.frame}
|
||||
\title{Skewness of the sample}
|
||||
\usage{
|
||||
skewness(x, na.rm = FALSE)
|
||||
|
||||
\method{skewness}{default}(x, na.rm = FALSE)
|
||||
|
||||
\method{skewness}{matrix}(x, na.rm = FALSE)
|
||||
|
||||
\method{skewness}{data.frame}(x, na.rm = FALSE)
|
||||
}
|
||||
\arguments{
|
||||
\item{x}{a vector of values, a \code{matrix} or a \code{data frame}}
|
||||
|
||||
\item{na.rm}{a logical value indicating whether \code{NA} values should be stripped before the computation proceeds.}
|
||||
}
|
||||
\description{
|
||||
Skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean.
|
||||
|
||||
When negative: the left tail is longer; the mass of the distribution is concentrated on the right of the figure. When positive: the right tail is longer; the mass of the distribution is concentrated on the left of the figure.
|
||||
}
|
||||
\seealso{
|
||||
\code{\link{kurtosis}}
|
||||
}
|
23
man/trends.Rd
Normal file
23
man/trends.Rd
Normal file
@ -0,0 +1,23 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/trends.R
|
||||
\name{trends}
|
||||
\alias{trends}
|
||||
\title{Detect trends using Machine Learning}
|
||||
\usage{
|
||||
trends(data, threshold_unique = 30, na.rm = TRUE, info = TRUE)
|
||||
}
|
||||
\arguments{
|
||||
\item{data}{a \code{data.frame}}
|
||||
|
||||
\item{threshold_unique}{do not analyse more unique \code{threshold_unique} items per variable}
|
||||
|
||||
\item{na.rm}{a logical value indicating whether \code{NA} values should be stripped before the computation proceeds.}
|
||||
|
||||
\item{info}{print relevant combinations to console}
|
||||
}
|
||||
\value{
|
||||
A \code{list} with class \code{"trends"}
|
||||
}
|
||||
\description{
|
||||
Test text
|
||||
}
|
@ -49,5 +49,9 @@ test_that("frequency table works", {
|
||||
# input must be freq tbl
|
||||
expect_error(septic_patients %>% top_freq(1))
|
||||
|
||||
# charts from plot and hist, should not raise errors
|
||||
plot(freq(septic_patients, age))
|
||||
hist(freq(septic_patients, age))
|
||||
|
||||
})
|
||||
|
||||
|
13
tests/testthat/test-kurtosis.R
Normal file
13
tests/testthat/test-kurtosis.R
Normal file
@ -0,0 +1,13 @@
|
||||
context("kurtosis.R")
|
||||
|
||||
test_that("kurtosis works", {
|
||||
expect_equal(kurtosis(septic_patients$age),
|
||||
6.423118,
|
||||
tolerance = 0.00001)
|
||||
expect_equal(unname(kurtosis(data.frame(septic_patients$age))),
|
||||
6.423118,
|
||||
tolerance = 0.00001)
|
||||
expect_equal(kurtosis(matrix(septic_patients$age)),
|
||||
6.423118,
|
||||
tolerance = 0.00001)
|
||||
})
|
13
tests/testthat/test-skewness.R
Normal file
13
tests/testthat/test-skewness.R
Normal file
@ -0,0 +1,13 @@
|
||||
context("skewness.R")
|
||||
|
||||
test_that("skewness works", {
|
||||
expect_equal(skewness(septic_patients$age),
|
||||
-1.637164,
|
||||
tolerance = 0.00001)
|
||||
expect_equal(unname(skewness(data.frame(septic_patients$age))),
|
||||
-1.637164,
|
||||
tolerance = 0.00001)
|
||||
expect_equal(skewness(matrix(septic_patients$age)),
|
||||
-1.637164,
|
||||
tolerance = 0.00001)
|
||||
})
|
Loading…
Reference in New Issue
Block a user