2018-12-16 22:45:12 +01:00
|
|
|
# ==================================================================== #
|
|
|
|
# TITLE #
|
2020-10-08 11:16:03 +02:00
|
|
|
# Antimicrobial Resistance (AMR) Analysis for R #
|
2018-12-16 22:45:12 +01:00
|
|
|
# #
|
2019-01-02 23:24:07 +01:00
|
|
|
# SOURCE #
|
2020-07-08 14:48:06 +02:00
|
|
|
# https://github.com/msberends/AMR #
|
2018-12-16 22:45:12 +01:00
|
|
|
# #
|
|
|
|
# LICENCE #
|
2020-12-27 00:30:28 +01:00
|
|
|
# (c) 2018-2021 Berends MS, Luz CF et al. #
|
2020-10-08 11:16:03 +02:00
|
|
|
# Developed at the University of Groningen, the Netherlands, in #
|
|
|
|
# collaboration with non-profit organisations Certe Medical #
|
|
|
|
# Diagnostics & Advice, and University Medical Center Groningen. #
|
2018-12-16 22:45:12 +01:00
|
|
|
# #
|
2019-01-02 23:24:07 +01:00
|
|
|
# This R package is free software; you can freely use and distribute #
|
|
|
|
# it for both personal and commercial purposes under the terms of the #
|
|
|
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
|
|
|
# the Free Software Foundation. #
|
2020-01-05 17:22:09 +01:00
|
|
|
# We created this package for both routine data analysis and academic #
|
|
|
|
# research and it was publicly released in the hope that it will be #
|
|
|
|
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
|
2020-10-08 11:16:03 +02:00
|
|
|
# #
|
|
|
|
# Visit our website for the full manual and a complete tutorial about #
|
|
|
|
# how to conduct AMR analysis: https://msberends.github.io/AMR/ #
|
2018-12-16 22:45:12 +01:00
|
|
|
# ==================================================================== #
|
|
|
|
|
2018-07-23 14:14:03 +02:00
|
|
|
context("first_isolate.R")
|
2018-03-27 17:43:42 +02:00
|
|
|
|
|
|
|
test_that("first isolates work", {
|
2019-10-15 14:35:23 +02:00
|
|
|
skip_on_cran()
|
|
|
|
|
2019-02-18 02:33:37 +01:00
|
|
|
# first isolates
|
2018-04-02 16:05:09 +02:00
|
|
|
expect_equal(
|
2018-06-19 10:05:38 +02:00
|
|
|
sum(
|
2019-08-27 16:45:42 +02:00
|
|
|
first_isolate(x = example_isolates,
|
2018-04-02 16:05:09 +02:00
|
|
|
col_date = "date",
|
|
|
|
col_patient_id = "patient_id",
|
2018-08-31 13:36:19 +02:00
|
|
|
col_mo = "mo",
|
2018-07-25 14:17:04 +02:00
|
|
|
info = TRUE),
|
2018-07-02 09:34:20 +02:00
|
|
|
na.rm = TRUE),
|
2020-05-28 10:51:56 +02:00
|
|
|
1300)
|
2018-06-19 10:05:38 +02:00
|
|
|
|
2019-10-11 17:21:02 +02:00
|
|
|
# first weighted isolates
|
2020-05-16 13:05:47 +02:00
|
|
|
ex_iso_with_keyab <- example_isolates
|
|
|
|
ex_iso_with_keyab$keyab <- key_antibiotics(example_isolates, warnings = FALSE)
|
2018-06-19 10:05:38 +02:00
|
|
|
expect_equal(
|
|
|
|
suppressWarnings(
|
|
|
|
sum(
|
2020-05-16 13:05:47 +02:00
|
|
|
first_isolate(x = ex_iso_with_keyab,
|
2019-10-11 17:21:02 +02:00
|
|
|
# let syntax determine arguments automatically
|
2018-12-14 09:31:53 +01:00
|
|
|
type = "keyantibiotics",
|
|
|
|
info = TRUE),
|
|
|
|
na.rm = TRUE)),
|
2020-05-28 10:51:56 +02:00
|
|
|
1396)
|
2020-05-16 13:05:47 +02:00
|
|
|
|
2019-02-18 02:33:37 +01:00
|
|
|
# when not ignoring I
|
2018-08-29 16:25:57 +02:00
|
|
|
expect_equal(
|
|
|
|
suppressWarnings(
|
|
|
|
sum(
|
2020-05-16 13:05:47 +02:00
|
|
|
first_isolate(x = ex_iso_with_keyab,
|
2018-08-29 16:25:57 +02:00
|
|
|
col_date = "date",
|
|
|
|
col_patient_id = "patient_id",
|
2018-08-31 13:36:19 +02:00
|
|
|
col_mo = "mo",
|
2018-08-29 16:25:57 +02:00
|
|
|
col_keyantibiotics = "keyab",
|
|
|
|
ignore_I = FALSE,
|
|
|
|
type = "keyantibiotics",
|
|
|
|
info = TRUE),
|
|
|
|
na.rm = TRUE)),
|
2020-05-28 10:51:56 +02:00
|
|
|
1419)
|
2019-02-18 02:33:37 +01:00
|
|
|
# when using points
|
2018-07-02 09:34:20 +02:00
|
|
|
expect_equal(
|
|
|
|
suppressWarnings(
|
|
|
|
sum(
|
2020-05-16 13:05:47 +02:00
|
|
|
first_isolate(x = ex_iso_with_keyab,
|
2018-07-02 09:34:20 +02:00
|
|
|
col_date = "date",
|
|
|
|
col_patient_id = "patient_id",
|
2018-08-31 13:36:19 +02:00
|
|
|
col_mo = "mo",
|
2018-07-02 09:34:20 +02:00
|
|
|
col_keyantibiotics = "keyab",
|
|
|
|
type = "points",
|
|
|
|
info = TRUE),
|
|
|
|
na.rm = TRUE)),
|
2020-09-24 00:50:23 +02:00
|
|
|
1399)
|
2018-04-03 11:08:31 +02:00
|
|
|
|
2019-02-18 02:33:37 +01:00
|
|
|
# first non-ICU isolates
|
2018-04-20 13:45:34 +02:00
|
|
|
expect_equal(
|
|
|
|
sum(
|
2019-08-27 16:45:42 +02:00
|
|
|
first_isolate(example_isolates,
|
2018-08-31 13:36:19 +02:00
|
|
|
col_mo = "mo",
|
2018-06-19 10:05:38 +02:00
|
|
|
col_date = "date",
|
|
|
|
col_patient_id = "patient_id",
|
|
|
|
col_icu = "ward_icu",
|
|
|
|
info = TRUE,
|
|
|
|
icu_exclude = TRUE),
|
|
|
|
na.rm = TRUE),
|
2020-05-28 10:51:56 +02:00
|
|
|
881)
|
2018-04-20 13:45:34 +02:00
|
|
|
|
2018-04-03 11:08:31 +02:00
|
|
|
# set 1500 random observations to be of specimen type 'Urine'
|
|
|
|
random_rows <- sample(x = 1:2000, size = 1500, replace = FALSE)
|
2020-05-16 13:05:47 +02:00
|
|
|
x <- example_isolates
|
|
|
|
x$specimen <- "Other"
|
|
|
|
x[random_rows, "specimen"] <- "Urine"
|
2018-06-19 10:05:38 +02:00
|
|
|
expect_lt(
|
|
|
|
sum(
|
2020-05-16 13:05:47 +02:00
|
|
|
first_isolate(x = x,
|
2018-06-19 10:05:38 +02:00
|
|
|
col_date = "date",
|
|
|
|
col_patient_id = "patient_id",
|
2018-08-31 13:36:19 +02:00
|
|
|
col_mo = "mo",
|
2018-06-19 10:05:38 +02:00
|
|
|
col_specimen = "specimen",
|
|
|
|
filter_specimen = "Urine",
|
|
|
|
info = TRUE),
|
|
|
|
na.rm = TRUE),
|
2018-04-03 11:08:31 +02:00
|
|
|
1501)
|
2018-07-02 09:34:20 +02:00
|
|
|
# same, but now exclude ICU
|
|
|
|
expect_lt(
|
|
|
|
sum(
|
2020-05-16 13:05:47 +02:00
|
|
|
first_isolate(x = x,
|
2018-07-02 09:34:20 +02:00
|
|
|
col_date = "date",
|
|
|
|
col_patient_id = "patient_id",
|
2018-08-31 13:36:19 +02:00
|
|
|
col_mo = "mo",
|
2018-07-02 09:34:20 +02:00
|
|
|
col_specimen = "specimen",
|
|
|
|
filter_specimen = "Urine",
|
|
|
|
col_icu = "ward_icu",
|
|
|
|
icu_exclude = TRUE,
|
|
|
|
info = TRUE),
|
|
|
|
na.rm = TRUE),
|
|
|
|
1501)
|
2018-08-23 21:27:15 +02:00
|
|
|
|
2018-08-29 16:25:57 +02:00
|
|
|
# "No isolates found"
|
2020-05-16 13:05:47 +02:00
|
|
|
test_iso <- example_isolates
|
|
|
|
test_iso$specimen <- "test"
|
|
|
|
expect_message(first_isolate(test_iso,
|
|
|
|
"date",
|
|
|
|
"patient_id",
|
|
|
|
col_mo = "mo",
|
|
|
|
col_specimen = "specimen",
|
|
|
|
filter_specimen = "something_unexisting",
|
|
|
|
info = TRUE))
|
2018-08-29 16:25:57 +02:00
|
|
|
|
|
|
|
# printing of exclusion message
|
2020-05-16 13:05:47 +02:00
|
|
|
expect_message(first_isolate(example_isolates,
|
|
|
|
col_date = "date",
|
2018-12-22 22:39:34 +01:00
|
|
|
col_mo = "mo",
|
|
|
|
col_patient_id = "patient_id",
|
|
|
|
col_testcode = "gender",
|
2020-02-21 21:13:38 +01:00
|
|
|
testcodes_exclude = "M",
|
|
|
|
info = TRUE))
|
2018-08-29 16:25:57 +02:00
|
|
|
|
|
|
|
# errors
|
2018-08-31 13:36:19 +02:00
|
|
|
expect_error(first_isolate("date", "patient_id", col_mo = "mo"))
|
2019-08-27 16:45:42 +02:00
|
|
|
expect_error(first_isolate(example_isolates,
|
2018-08-29 16:25:57 +02:00
|
|
|
col_date = "non-existing col",
|
2018-08-31 13:36:19 +02:00
|
|
|
col_mo = "mo"))
|
2018-08-29 16:25:57 +02:00
|
|
|
|
2020-12-13 20:44:32 +01:00
|
|
|
require("dplyr")
|
|
|
|
|
2018-09-01 21:19:46 +02:00
|
|
|
# if mo is not an mo class, result should be the same
|
2019-08-27 16:45:42 +02:00
|
|
|
expect_identical(example_isolates %>%
|
2018-12-22 22:39:34 +01:00
|
|
|
mutate(mo = as.character(mo)) %>%
|
|
|
|
first_isolate(col_date = "date",
|
|
|
|
col_mo = "mo",
|
|
|
|
col_patient_id = "patient_id"),
|
2019-08-27 16:45:42 +02:00
|
|
|
example_isolates %>%
|
2018-09-01 21:19:46 +02:00
|
|
|
first_isolate(col_date = "date",
|
|
|
|
col_mo = "mo",
|
|
|
|
col_patient_id = "patient_id"))
|
2020-12-13 20:44:32 +01:00
|
|
|
|
|
|
|
# support for WHONET
|
|
|
|
expect_message(example_isolates %>%
|
|
|
|
select(-patient_id) %>%
|
|
|
|
mutate(`First name` = "test",
|
|
|
|
`Last name` = "test",
|
|
|
|
Sex = "Female") %>%
|
|
|
|
first_isolate(info = TRUE))
|
2018-08-29 16:25:57 +02:00
|
|
|
|
2019-05-31 14:25:11 +02:00
|
|
|
# missing dates should be no problem
|
2019-08-27 16:45:42 +02:00
|
|
|
df <- example_isolates
|
2019-05-13 14:56:23 +02:00
|
|
|
df[1:100, "date"] <- NA
|
|
|
|
expect_equal(
|
|
|
|
sum(
|
|
|
|
first_isolate(x = df,
|
|
|
|
col_date = "date",
|
|
|
|
col_patient_id = "patient_id",
|
|
|
|
col_mo = "mo",
|
|
|
|
info = TRUE),
|
|
|
|
na.rm = TRUE),
|
2020-05-28 10:51:56 +02:00
|
|
|
1305)
|
2019-08-08 22:39:42 +02:00
|
|
|
|
|
|
|
# unknown MOs
|
2020-05-16 13:05:47 +02:00
|
|
|
test_unknown <- example_isolates
|
|
|
|
test_unknown$mo <- ifelse(test_unknown$mo == "B_ESCHR_COLI", "UNKNOWN", test_unknown$mo)
|
|
|
|
expect_equal(sum(first_isolate(test_unknown, include_unknown = FALSE)),
|
2020-05-28 10:51:56 +02:00
|
|
|
1045)
|
2020-05-16 13:05:47 +02:00
|
|
|
expect_equal(sum(first_isolate(test_unknown, include_unknown = TRUE)),
|
2020-05-28 10:51:56 +02:00
|
|
|
1528)
|
2020-05-16 13:05:47 +02:00
|
|
|
|
|
|
|
test_unknown$mo <- ifelse(test_unknown$mo == "UNKNOWN", NA, test_unknown$mo)
|
|
|
|
expect_equal(sum(first_isolate(test_unknown)),
|
2020-05-28 10:51:56 +02:00
|
|
|
1045)
|
2020-05-18 10:30:53 +02:00
|
|
|
|
|
|
|
# shortcuts
|
|
|
|
expect_identical(filter_first_isolate(example_isolates),
|
|
|
|
subset(example_isolates, first_isolate(example_isolates)))
|
|
|
|
ex <- example_isolates
|
|
|
|
ex$keyab <- key_antibiotics(ex)
|
|
|
|
expect_identical(filter_first_weighted_isolate(example_isolates),
|
|
|
|
subset(example_isolates, first_isolate(ex)))
|
|
|
|
|
2020-11-17 16:57:41 +01:00
|
|
|
# notice that all mo's are distinct, so all are TRUE
|
|
|
|
expect_true(all(example_isolates %pm>%
|
|
|
|
pm_distinct(mo, .keep_all = TRUE) %pm>%
|
2020-12-13 20:44:32 +01:00
|
|
|
first_isolate(info = TRUE) == TRUE))
|
|
|
|
|
|
|
|
# only one isolate, so return fast
|
|
|
|
expect_true(first_isolate(data.frame(mo = "Escherichia coli", date = Sys.Date(), patient = "patient"), info = TRUE))
|
2020-11-17 16:57:41 +01:00
|
|
|
|
2018-03-27 17:43:42 +02:00
|
|
|
})
|