(v2.1.1.9054) fix examples

This commit is contained in:
dr. M.S. (Matthijs) Berends 2024-06-17 13:52:02 +02:00
parent 2dee1d71dc
commit 13baf8d7be
4 changed files with 156 additions and 62 deletions

View File

@ -1,5 +1,5 @@
Package: AMR
Version: 2.1.1.9053
Version: 2.1.1.9054
Date: 2024-06-17
Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR)

View File

@ -1,6 +1,6 @@
# AMR 2.1.1.9053
# AMR 2.1.1.9054
*(this beta version will eventually become v3.0. We're happy to reach a new major milestone soon, which will be all about the new One Health support!)*
*(this beta version will eventually become v3.0. We're happy to reach a new major milestone soon, which will be all about the new One Health support! Install this beta using [the instructions here](https://msberends.github.io/AMR/#latest-development-version).)*
#### A New Milestone: One Health Support (= Human + Veterinary + Environmental)
This package now supports not only tools for AMR data analysis in clinical settings, but also for veterinary and environmental microbiology. This was made possible through a collaboration with the [University of Prince Edward Island](https://www.upei.ca/avc), Canada. To celebrate this great improvement of the package, we also updated the package logo to reflect this change.
@ -15,11 +15,11 @@ This package now supports not only tools for AMR data analysis in clinical setti
* The `antibiotics` data set contains all veterinary antibiotics, such as pradofloxacin and enrofloxacin. All WHOCC codes for veterinary use have been added as well.
* `ab_atc()` now supports ATC codes of veterinary antibiotics (that all start with "Q")
* `ab_url()` now supports retrieving the WHOCC url of their ATCvet pages
* EUCAST 2024 and CLSI 2024 are now supported, by adding all of their over 4,000 clinical breakpoints to the `clinical_breakpoints` data set for usage in `as.sir()`. EUCAST 2024 (v14.0) is now the new default guideline for all MIC and disks diffusion interpretations.
* `as.sir()` now brings additional factor levels: "NI" for non-interpretable and "SDD" for susceptible dose-dependent. Users can now set their own criteria (using regular expressions) as to what should be considered S, I, R, SDD, and NI. Also, to get quantitative values, `as.double()` or a `sir` object will return 1 for S, 2 for SDD/I, and 3 for R (NI will become `NA`). Other functions using `sir` classes (e.g., `summary()`) are updated to reflect the change to contain NI and SDD.
* The function group `scale_*_mic()`, namely: `scale_x_mic()`, `scale_y_mic()`, `scale_colour_mic()` and `scale_fill_mic()`. They are advanced ggplot2 extensions to allow easy plotting of MIC values. They allow for manual range definition and plotting missing intermediate log2 levels.
* Function `rescale_mic()`, which allows to rescale MIC values to a manually set range. This is the powerhouse behind the `scale_*_mic()` functions, but it can be used by users directly to e.g. compare equality in MIC distributions by rescaling them to the same range first.
* Function `mo_group_members()` to retrieve the member microorganisms of a microorganism group. For example, `mo_group_members("Strep group C")` returns a vector of all microorganisms that are in that group.
* Clinical breakpoints and intrinsic resistance of EUCAST 2024 and CLSI 2024 have been added to the `clinical_breakpoints` data set for usage in `as.sir()`. EUCAST 2024 (v14.0) is now the new default guideline for all MIC and disks diffusion interpretations.
## Changed
* For SIR interpretation, it is now possible to use column names for argument `ab`, `mo`, and `uti`: `as.sir(..., ab = "column1", mo = "column2", uti = "column3")`. This greatly improves the flexibility for users.

105
R/sir.R
View File

@ -158,33 +158,89 @@
#' summary(example_isolates) # see all SIR results at a glance
#'
#' # For INTERPRETING disk diffusion and MIC values -----------------------
#'
#' # example data sets, with combined MIC values and disk zones
#' df_wide <- data.frame(
#' microorganism = "Escherichia coli",
#' AMP = as.mic(8),
#' CIP = as.mic(0.256),
#' GEN = as.disk(18),
#' TOB = as.disk(16),
#' ERY = "R"
#' )
#' df_long <- data.frame(
#' bacteria = rep("Escherichia coli", 3),
#' antibiotic = c("amoxicillin", "cipro", "tobra", "genta"),
#' mics = as.mic(c(0.01, 1, 4, 8)),
#' disks = as.disk(c(6, 10, 14, 18))
#' )
#'
#' \donttest{
#' ## Using dplyr -------------------------------------------------
#' if (require("dplyr")) {
#' # approaches that all work without additional arguments:
#' df %>% mutate_if(is.mic, as.sir)
#' df %>% mutate_if(function(x) is.mic(x) | is.disk(x), as.sir)
#' df %>% mutate(across(where(is.mic), as.sir))
#' df %>% mutate_at(vars(AMP:TOB), as.sir)
#' df %>% mutate(across(AMP:TOB, as.sir))
#' df_wide %>% mutate_if(is.mic, as.sir)
#' df_wide %>% mutate_if(function(x) is.mic(x) | is.disk(x), as.sir)
#' df_wide %>% mutate(across(where(is.mic), as.sir))
#' df_wide %>% mutate_at(vars(AMP:TOB), as.sir)
#' df_wide %>% mutate(across(AMP:TOB, as.sir))
#'
#' # approaches that all work with additional arguments:
#' df %>% mutate_if(is.mic, as.sir, mo = "column1", guideline = "CLSI")
#' df %>% mutate(across(where(is.mic),
#' function(x) as.sir(x, mo = "column1", guideline = "CLSI")))
#' df %>% mutate_at(vars(AMP:TOB), as.sir, mo = "column1", guideline = "CLSI")
#' df %>% mutate(across(AMP:TOB,
#' function(x) as.sir(x, mo = "column1", guideline = "CLSI")))
#' df_long %>%
#' # given a certain data type, e.g. MIC values
#' mutate_if(is.mic, as.sir,
#' mo = "bacteria",
#' ab = "antibiotic",
#' guideline = "CLSI")
#' df_long %>%
#' mutate(across(where(is.mic),
#' function(x) as.sir(x,
#' mo = "bacteria",
#' ab = "antibiotic",
#' guideline = "CLSI")))
#' df_long %>%
#' # given certain columns, e.g. from AMP to TOB
#' mutate_at(vars(AMP:TOB), as.sir,
#' mo = "bacteria",
#' ab = "antibiotic",
#' guideline = "CLSI")
#' df_long %>%
#' mutate(across(AMP:TOB,
#' function(x) as.sir(x,
#' mo = "bacteria",
#' ab = "antibiotic",
#' guideline = "CLSI")))
#'
#' # for veterinary breakpoints, add 'host':
#' df %>% mutate_if(is.mic, as.sir, guideline = "CLSI", host = "species_column")
#' df %>% mutate_if(is.mic, as.sir, guideline = "CLSI", host = "horse")
#' df %>% mutate(across(where(is.mic),
#' function(x) as.sir(x, guideline = "CLSI", host = "species_column")))
#' df %>% mutate_at(vars(AMP:TOB), as.sir, guideline = "CLSI", host = "species_column")
#' df %>% mutate(across(AMP:TOB,
#' function(x) as.sir(x, mo = "column1", guideline = "CLSI")))
#' df_long$animal_species <- c("cats", "dogs", "horses", "cattle")
#' df_long %>%
#' # given a certain data type, e.g. MIC values
#' mutate_if(is.mic, as.sir,
#' mo = "bacteria",
#' ab = "antibiotic",
#' host = "animal_species",
#' guideline = "CLSI")
#' df_long %>%
#' mutate(across(where(is.mic),
#' function(x) as.sir(x,
#' mo = "bacteria",
#' ab = "antibiotic",
#' host = "animal_species",
#' guideline = "CLSI")))
#' df_long %>%
#' # given certain columns, e.g. from AMP to TOB
#' mutate_at(vars(AMP:TOB), as.sir,
#' mo = "bacteria",
#' ab = "antibiotic",
#' host = "animal_species",
#' guideline = "CLSI")
#' df_long %>%
#' mutate(across(AMP:TOB,
#' function(x) as.sir(x,
#' mo = "bacteria",
#' ab = "antibiotic",
#' host = "animal_species",
#' guideline = "CLSI")))
#'
#' # to include information about urinary tract infections (UTI)
#' data.frame(mo = "E. coli",
@ -197,23 +253,14 @@
#' specimen = c("urine", "blood")) %>%
#' as.sir() # automatically determines urine isolates
#'
#' df %>%
#' df_wide %>%
#' mutate_at(vars(AMP:TOB), as.sir, mo = "E. coli", uti = TRUE)
#' }
#'
#'
#' ## Using base R ------------------------------------------------
#'
#' # a whole data set, even with combined MIC values and disk zones
#' df <- data.frame(
#' microorganism = "Escherichia coli",
#' AMP = as.mic(8),
#' CIP = as.mic(0.256),
#' GEN = as.disk(18),
#' TOB = as.disk(16),
#' ERY = "R"
#' )
#' as.sir(df)
#' as.sir(df_wide)
#'
#' # return a 'logbook' about the results:
#' sir_interpretation_history()

View File

@ -256,32 +256,88 @@ summary(example_isolates) # see all SIR results at a glance
# For INTERPRETING disk diffusion and MIC values -----------------------
# example data sets, with combined MIC values and disk zones
df_wide <- data.frame(
microorganism = "Escherichia coli",
AMP = as.mic(8),
CIP = as.mic(0.256),
GEN = as.disk(18),
TOB = as.disk(16),
ERY = "R"
)
df_long <- data.frame(
bacteria = rep("Escherichia coli", 3),
antibiotic = c("amoxicillin", "cipro", "tobra", "genta"),
mics = as.mic(c(0.01, 1, 4, 8)),
disks = as.disk(c(6, 10, 14, 18))
)
\donttest{
## Using dplyr -------------------------------------------------
if (require("dplyr")) {
# approaches that all work without additional arguments:
df \%>\% mutate_if(is.mic, as.sir)
df \%>\% mutate_if(function(x) is.mic(x) | is.disk(x), as.sir)
df \%>\% mutate(across(where(is.mic), as.sir))
df \%>\% mutate_at(vars(AMP:TOB), as.sir)
df \%>\% mutate(across(AMP:TOB, as.sir))
df_wide \%>\% mutate_if(is.mic, as.sir)
df_wide \%>\% mutate_if(function(x) is.mic(x) | is.disk(x), as.sir)
df_wide \%>\% mutate(across(where(is.mic), as.sir))
df_wide \%>\% mutate_at(vars(AMP:TOB), as.sir)
df_wide \%>\% mutate(across(AMP:TOB, as.sir))
# approaches that all work with additional arguments:
df \%>\% mutate_if(is.mic, as.sir, mo = "column1", guideline = "CLSI")
df \%>\% mutate(across(where(is.mic),
function(x) as.sir(x, mo = "column1", guideline = "CLSI")))
df \%>\% mutate_at(vars(AMP:TOB), as.sir, mo = "column1", guideline = "CLSI")
df \%>\% mutate(across(AMP:TOB,
function(x) as.sir(x, mo = "column1", guideline = "CLSI")))
df_long \%>\%
# given a certain data type, e.g. MIC values
mutate_if(is.mic, as.sir,
mo = "bacteria",
ab = "antibiotic",
guideline = "CLSI")
df_long \%>\%
mutate(across(where(is.mic),
function(x) as.sir(x,
mo = "bacteria",
ab = "antibiotic",
guideline = "CLSI")))
df_long \%>\%
# given certain columns, e.g. from AMP to TOB
mutate_at(vars(AMP:TOB), as.sir,
mo = "bacteria",
ab = "antibiotic",
guideline = "CLSI")
df_long \%>\%
mutate(across(AMP:TOB,
function(x) as.sir(x,
mo = "bacteria",
ab = "antibiotic",
guideline = "CLSI")))
# for veterinary breakpoints, add 'host':
df \%>\% mutate_if(is.mic, as.sir, guideline = "CLSI", host = "species_column")
df \%>\% mutate_if(is.mic, as.sir, guideline = "CLSI", host = "horse")
df \%>\% mutate(across(where(is.mic),
function(x) as.sir(x, guideline = "CLSI", host = "species_column")))
df \%>\% mutate_at(vars(AMP:TOB), as.sir, guideline = "CLSI", host = "species_column")
df \%>\% mutate(across(AMP:TOB,
function(x) as.sir(x, mo = "column1", guideline = "CLSI")))
df_long$animal_species <- c("cats", "dogs", "horses", "cattle")
df_long \%>\%
# given a certain data type, e.g. MIC values
mutate_if(is.mic, as.sir,
mo = "bacteria",
ab = "antibiotic",
host = "animal_species",
guideline = "CLSI")
df_long \%>\%
mutate(across(where(is.mic),
function(x) as.sir(x,
mo = "bacteria",
ab = "antibiotic",
host = "animal_species",
guideline = "CLSI")))
df_long \%>\%
# given certain columns, e.g. from AMP to TOB
mutate_at(vars(AMP:TOB), as.sir,
mo = "bacteria",
ab = "antibiotic",
host = "animal_species",
guideline = "CLSI")
df_long \%>\%
mutate(across(AMP:TOB,
function(x) as.sir(x,
mo = "bacteria",
ab = "antibiotic",
host = "animal_species",
guideline = "CLSI")))
# to include information about urinary tract infections (UTI)
data.frame(mo = "E. coli",
@ -294,23 +350,14 @@ if (require("dplyr")) {
specimen = c("urine", "blood")) \%>\%
as.sir() # automatically determines urine isolates
df \%>\%
df_wide \%>\%
mutate_at(vars(AMP:TOB), as.sir, mo = "E. coli", uti = TRUE)
}
## Using base R ------------------------------------------------
# a whole data set, even with combined MIC values and disk zones
df <- data.frame(
microorganism = "Escherichia coli",
AMP = as.mic(8),
CIP = as.mic(0.256),
GEN = as.disk(18),
TOB = as.disk(16),
ERY = "R"
)
as.sir(df)
as.sir(df_wide)
# return a 'logbook' about the results:
sir_interpretation_history()