1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-23 15:04:34 +01:00

(v1.5.0.9010) MDRO vignette update, get_episode for < day

This commit is contained in:
dr. M.S. (Matthijs) Berends 2021-01-24 14:48:56 +01:00
parent 1a88caa119
commit 286eaa9699
52 changed files with 319 additions and 210 deletions

View File

@ -25,7 +25,6 @@
^vignettes/AMR.Rmd$
^vignettes/benchmarks.Rmd$
^vignettes/EUCAST.Rmd$
^vignettes/MDR.Rmd$
^vignettes/PCA.Rmd$
^vignettes/resistance_predict.Rmd$
^vignettes/SPSS.Rmd$

View File

@ -1,6 +1,6 @@
Package: AMR
Version: 1.5.0.9009
Date: 2021-01-22
Version: 1.5.0.9010
Date: 2021-01-24
Title: Antimicrobial Resistance Analysis
Authors@R: c(
person(role = c("aut", "cre"),

View File

@ -1,5 +1,5 @@
# AMR 1.5.0.9009
## <small>Last updated: 22 January 2021</small>
# AMR 1.5.0.9010
## <small>Last updated: 24 January 2021</small>
### New
* Support for EUCAST Clinical Breakpoints v11.0 (2021), effective in the `eucast_rules()` function and in `as.rsi()` to interpret MIC and disk diffusion values. This is now the default guideline in this package.
@ -34,6 +34,7 @@
* WHONET code `"PNV"` will now correctly be interpreted as `PHN`, the antibiotic code for phenoxymethylpenicillin ('peni V')
* Fix for verbose output of `mdro(..., verbose = TRUE)` for German guideline (3MGRN and 4MGRN) and Dutch guideline (BRMO, only *P. aeruginosa*)
* `is.rsi.eligible()` now returns `FALSE` immediately if the input does not contain any of the values "R", "S" or "I". This drastically improves speed, also for a lot of other functions that rely on automatic determination of antibiotic columns.
* Functions `get_episode()` and `is_new_episode()` now support less than a day as value for argument `episode_days` (e.g., to include one patient/test per hour)
### Other
* Big documentation updates

View File

@ -458,9 +458,9 @@ vector_or <- function(v, quotes = TRUE, reverse = FALSE) {
format_class <- function(class, plural) {
class.bak <- class
class[class %in% c("numeric", "double")] <- "number"
class[class == "numeric"] <- "number"
class[class == "integer"] <- "whole number"
if (any(c("numeric", "double") %in% class.bak, na.rm = TRUE) & "integer" %in% class.bak) {
if (all(c("numeric", "integer") %in% class.bak, na.rm = TRUE)) {
class[class %in% c("number", "whole number")] <- "(whole) number"
}
class[class == "character"] <- "text string"
@ -496,6 +496,8 @@ meet_criteria <- function(object,
has_length = NULL,
looks_like = NULL,
is_in = NULL,
is_positive = NULL,
is_finite = NULL,
contains_column_class = NULL,
allow_NULL = FALSE,
allow_NA = FALSE,
@ -504,6 +506,16 @@ meet_criteria <- function(object,
obj_name <- deparse(substitute(object))
call_depth <- -2 - abs(.call_depth)
# if object is missing, or another error:
tryCatch(invisible(object),
error = function(e) pkg_env$meet_criteria_error_txt <- e$message)
if (!is.null(pkg_env$meet_criteria_error_txt)) {
error_txt <- pkg_env$meet_criteria_error_txt
pkg_env$meet_criteria_error_txt <- NULL
stop(error_txt, call. = FALSE)
}
pkg_env$meet_criteria_error_txt <- NULL
if (is.null(object)) {
stop_if(allow_NULL == FALSE, "argument `", obj_name, "` must not be NULL", call = call_depth)
@ -552,6 +564,24 @@ meet_criteria <- function(object,
vector_or(is_in, quotes = !isTRUE(any(c("double", "numeric", "integer") %in% allow_class))),
call = call_depth)
}
if (!is.null(is_positive)) {
stop_if(is.numeric(object) && !all(object > 0, na.rm = TRUE), "argument `", obj_name,
"` must ",
ifelse(!is.null(has_length) && length(has_length) == 1 && has_length == 1,
"be a positive number",
"all be positive numbers"),
" (higher than zero)",
call = call_depth)
}
if (!is.null(is_finite)) {
stop_if(is.numeric(object) && !all(is.finite(object[!is.na(object)]), na.rm = TRUE), "argument `", obj_name,
"` must ",
ifelse(!is.null(has_length) && length(has_length) == 1 && has_length == 1,
"be a finite number",
"all be finite numbers"),
" (i.e., not be infinite)",
call = call_depth)
}
if (!is.null(contains_column_class)) {
stop_ifnot(any(vapply(FUN.VALUE = logical(1),
object,

View File

@ -38,7 +38,7 @@
#' @inheritSection AMR Reference Data Publicly Available
#' @inheritSection AMR Read more on Our Website!
#' @examples
#' # `example_isolates` is a dataset available in the AMR package.
#' # `example_isolates` is a data set available in the AMR package.
#' # See ?example_isolates.
#'
#' # this will select columns 'IPM' (imipenem) and 'MEM' (meropenem):

View File

@ -149,8 +149,8 @@ age <- function(x, reference = Sys.Date(), exact = FALSE, na.rm = FALSE, ...) {
#' }
#' }
age_groups <- function(x, split_at = c(12, 25, 55, 75), na.rm = FALSE) {
meet_criteria(x, allow_class = c("numeric", "integer"))
meet_criteria(split_at, allow_class = c("numeric", "integer", "character"))
meet_criteria(x, allow_class = c("numeric", "integer"), is_positive = TRUE, is_finite = TRUE)
meet_criteria(split_at, allow_class = c("numeric", "integer", "character"), is_positive = TRUE, is_finite = TRUE)
meet_criteria(na.rm, allow_class = "logical", has_length = 1)
if (any(x < 0, na.rm = TRUE)) {

View File

@ -44,7 +44,7 @@
#' }
availability <- function(tbl, width = NULL) {
meet_criteria(tbl, allow_class = "data.frame")
meet_criteria(width, allow_class = "numeric", allow_NULL = TRUE)
meet_criteria(width, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE, is_positive = TRUE, is_finite = TRUE)
x <- vapply(FUN.VALUE = double(1), tbl, function(x) {
1 - sum(is.na(x)) / length(x)

View File

@ -129,7 +129,7 @@ format.bug_drug_combinations <- function(x,
meet_criteria(x, allow_class = "data.frame")
meet_criteria(translate_ab, allow_class = c("character", "logical"), has_length = 1, allow_NA = TRUE)
meet_criteria(language, has_length = 1, is_in = c(LANGUAGES_SUPPORTED, ""), allow_NULL = TRUE, allow_NA = TRUE)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(combine_SI, allow_class = "logical", has_length = 1)
meet_criteria(combine_IR, allow_class = "logical", has_length = 1)
meet_criteria(add_ab_group, allow_class = "logical", has_length = 1)

View File

@ -61,7 +61,7 @@ as.disk <- function(x, na.rm = FALSE) {
meet_criteria(na.rm, allow_class = "logical", has_length = 1)
if (!is.disk(x)) {
x <- x %pm>% unlist()
x <- unlist(x)
if (na.rm == TRUE) {
x <- x[!is.na(x)]
}

View File

@ -28,8 +28,8 @@
#' These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument `episode_days`. This can be used to determine clinical episodes for any epidemiological analysis. The [get_episode()] function returns the index number of the episode per group, while the [is_new_episode()] function returns values `TRUE`/`FALSE` to indicate whether an item in a vector is the start of a new episode.
#' @inheritSection lifecycle Stable Lifecycle
#' @param x vector of dates (class `Date` or `POSIXt`)
#' @param episode_days length of the required episode in days, see *Details*
#' @param ... arguments passed on to [as.Date()]
#' @param episode_days required episode length in days, can also be less than a day, see *Details*
#' @param ... arguments passed on to [as.POSIXct()]
#' @details
#' Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least `episode_days` days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least `episode_days` days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.
#'
@ -44,15 +44,20 @@
#' @export
#' @inheritSection AMR Read more on Our Website!
#' @examples
#' # `example_isolates` is a dataset available in the AMR package.
#' # `example_isolates` is a data set available in the AMR package.
#' # See ?example_isolates.
#'
#' get_episode(example_isolates$date, episode_days = 60)
#' is_new_episode(example_isolates$date, episode_days = 60)
#' get_episode(example_isolates$date, episode_days = 60) # indices
#' is_new_episode(example_isolates$date, episode_days = 60) # TRUE/FALSE
#'
#' # filter on results from the third 60-day episode only, using base R
#' example_isolates[which(get_episode(example_isolates$date, 60) == 3), ]
#'
#' # the functions also work for less than a day, e.g. to include one per hour:
#' get_episode(c(Sys.time(),
#' Sys.time() + 60 * 60),
#' episode_days = 1/24)
#'
#' \donttest{
#' if (require("dplyr")) {
#' # is_new_episode() can also be used in dplyr verbs to determine patient
@ -100,7 +105,9 @@
#' }
get_episode <- function(x, episode_days, ...) {
meet_criteria(x, allow_class = c("Date", "POSIXt"))
meet_criteria(episode_days, allow_class = c("numeric", "double", "integer"), has_length = 1)
meet_criteria(episode_days, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
stop_if(inherits(x, "Date") & episode_days < 1,
"argument `episode_days` must be at least 1 (day) when `x` is not a date-time object")
exec_episode(type = "sequential",
x = x,
@ -112,7 +119,9 @@ get_episode <- function(x, episode_days, ...) {
#' @export
is_new_episode <- function(x, episode_days, ...) {
meet_criteria(x, allow_class = c("Date", "POSIXt"))
meet_criteria(episode_days, allow_class = c("numeric", "double", "integer"), has_length = 1)
meet_criteria(episode_days, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
stop_if(inherits(x, "Date") & episode_days < 1,
"argument `episode_days` must be at least 1 (day) when `x` is not a date-time object")
exec_episode(type = "logical",
x = x,
@ -121,7 +130,10 @@ is_new_episode <- function(x, episode_days, ...) {
}
exec_episode <- function(type, x, episode_days, ...) {
x <- as.double(as.Date(x, ...)) # as.Date() for POSIX classes
x <- as.double(as.POSIXct(x, ...)) # as.POSIXct() for Date classes
# since x is now in seconds, get seconds from episode_days as well
episode_seconds <- episode_days * 60 * 60 * 24
if (length(x) == 1) {
if (type == "logical") {
return(TRUE)
@ -129,7 +141,7 @@ exec_episode <- function(type, x, episode_days, ...) {
return(1)
}
} else if (length(x) == 2) {
if (max(x) - min(x) >= episode_days) {
if (max(x) - min(x) >= episode_seconds) {
if (type == "logical") {
return(c(TRUE, TRUE))
} else if (type == "sequential") {
@ -146,13 +158,13 @@ exec_episode <- function(type, x, episode_days, ...) {
# I asked on StackOverflow:
# https://stackoverflow.com/questions/42122245/filter-one-row-every-year
exec <- function(x, episode_days) {
exec <- function(x, episode_seconds) {
indices <- integer()
start <- x[1]
ind <- 1
indices[1] <- 1
for (i in 2:length(x)) {
if (isTRUE((x[i] - start) >= episode_days)) {
if (isTRUE((x[i] - start) >= episode_seconds)) {
ind <- ind + 1
if (type == "logical") {
indices[ind] <- i
@ -175,7 +187,7 @@ exec_episode <- function(type, x, episode_days, ...) {
df <- data.frame(x = x,
y = seq_len(length(x))) %pm>%
pm_arrange(x)
df$new <- exec(df$x, episode_days)
df$new <- exec(df$x, episode_seconds)
df %pm>%
pm_arrange(y) %pm>%
pm_pull(new)

View File

@ -46,7 +46,7 @@
#' @param include_unknown logical to determine whether 'unknown' microorganisms should be included too, i.e. microbial code `"UNKNOWN"`, which defaults to `FALSE`. For WHONET users, this means that all records with organism code `"con"` (*contamination*) will be excluded at default. Isolates with a microbial ID of `NA` will always be excluded as first isolate.
#' @param ... arguments passed on to [first_isolate()] when using [filter_first_isolate()], or arguments passed on to [key_antibiotics()] when using [filter_first_weighted_isolate()]
#' @details
#' These functions are context-aware when used inside `dplyr` verbs, such as `filter()`, `mutate()` and `summarise()`. This means that then the `x` argument can be left blank, see *Examples*.
#' These functions are context-aware. This means that then the `x` argument can be left blank, see *Examples*.
#'
#' The [first_isolate()] function is a wrapper around the [is_new_episode()] function, but more efficient for data sets containing microorganism codes or names.
#'
@ -96,7 +96,7 @@
#' **M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 4th Edition**, 2014, *Clinical and Laboratory Standards Institute (CLSI)*. <https://clsi.org/standards/products/microbiology/documents/m39/>.
#' @inheritSection AMR Read more on Our Website!
#' @examples
#' # `example_isolates` is a dataset available in the AMR package.
#' # `example_isolates` is a data set available in the AMR package.
#' # See ?example_isolates.
#'
#' # basic filtering on first isolates
@ -172,20 +172,20 @@ first_isolate <- function(x,
col_keyantibiotics <- NULL
}
meet_criteria(col_keyantibiotics, allow_class = "character", has_length = 1, allow_NULL = TRUE, is_in = colnames(x))
meet_criteria(episode_days, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(episode_days, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(testcodes_exclude, allow_class = "character", allow_NULL = TRUE)
meet_criteria(icu_exclude, allow_class = "logical", has_length = 1)
meet_criteria(specimen_group, allow_class = "character", has_length = 1, allow_NULL = TRUE)
meet_criteria(type, allow_class = "character", has_length = 1)
meet_criteria(ignore_I, allow_class = "logical", has_length = 1)
meet_criteria(points_threshold, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(points_threshold, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(info, allow_class = "logical", has_length = 1)
meet_criteria(include_unknown, allow_class = "logical", has_length = 1)
dots <- unlist(list(...))
if (length(dots) != 0) {
# backwards compatibility with old arguments
dots.names <- dots %pm>% names()
dots.names <- names(dots)
if ("filter_specimen" %in% dots.names) {
specimen_group <- dots[which(dots.names == "filter_specimen")]
}

View File

@ -61,7 +61,7 @@
#' @rdname ggplot_pca
#' @export
#' @examples
#' # `example_isolates` is a dataset available in the AMR package.
#' # `example_isolates` is a data set available in the AMR package.
#' # See ?example_isolates.
#'
#' # See ?pca for more info about Principal Component Analysis (PCA).
@ -109,26 +109,26 @@ ggplot_pca <- function(x,
stop_ifnot_installed("ggplot2")
meet_criteria(x, allow_class = c("prcomp", "princomp", "PCA", "lda"))
meet_criteria(choices, allow_class = c("numeric", "integer"), has_length = 2)
meet_criteria(choices, allow_class = c("numeric", "integer"), has_length = 2, is_positive = TRUE, is_finite = TRUE)
meet_criteria(scale, allow_class = c("numeric", "integer", "logical"), has_length = 1)
meet_criteria(pc.biplot, allow_class = "logical", has_length = 1)
meet_criteria(labels, allow_class = "character", allow_NULL = TRUE)
meet_criteria(labels_textsize, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(labels_text_placement, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(labels_textsize, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(labels_text_placement, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(groups, allow_class = "character", allow_NULL = TRUE)
meet_criteria(ellipse, allow_class = "logical", has_length = 1)
meet_criteria(ellipse_prob, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(ellipse_size, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(ellipse_alpha, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(points_size, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(points_alpha, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(ellipse_prob, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(ellipse_size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(ellipse_alpha, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(points_size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(points_alpha, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(arrows, allow_class = "logical", has_length = 1)
meet_criteria(arrows_colour, allow_class = "character", has_length = 1)
meet_criteria(arrows_size, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(arrows_textsize, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(arrows_size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(arrows_textsize, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(arrows_textangled, allow_class = "logical", has_length = 1)
meet_criteria(arrows_alpha, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(base_textsize, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(arrows_alpha, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(base_textsize, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
calculations <- pca_calculations(pca_model = x,
groups = groups,

View File

@ -180,12 +180,12 @@ ggplot_rsi <- function(data,
meet_criteria(translate_ab, allow_class = c("character", "logical"), has_length = 1, allow_NA = TRUE)
meet_criteria(combine_SI, allow_class = "logical", has_length = 1)
meet_criteria(combine_IR, allow_class = "logical", has_length = 1)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_finite = TRUE)
meet_criteria(language, has_length = 1, is_in = c(LANGUAGES_SUPPORTED, ""), allow_NULL = TRUE, allow_NA = TRUE)
meet_criteria(nrow, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE)
meet_criteria(nrow, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE, is_positive = TRUE, is_finite = TRUE)
meet_criteria(colours, allow_class = c("character", "logical"))
meet_criteria(datalabels, allow_class = "logical", has_length = 1)
meet_criteria(datalabels.size, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(datalabels.size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(datalabels.colour, allow_class = "character", has_length = 1)
meet_criteria(title, allow_class = "character", has_length = 1, allow_NULL = TRUE)
meet_criteria(subtitle, allow_class = "character", has_length = 1, allow_NULL = TRUE)
@ -279,7 +279,7 @@ geom_rsi <- function(position = NULL,
meet_criteria(x, allow_class = "character", has_length = 1)
meet_criteria(fill, allow_class = "character", has_length = 1)
meet_criteria(translate_ab, allow_class = c("character", "logical"), has_length = 1, allow_NA = TRUE)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_finite = TRUE)
meet_criteria(language, has_length = 1, is_in = c(LANGUAGES_SUPPORTED, ""), allow_NULL = TRUE, allow_NA = TRUE)
meet_criteria(combine_SI, allow_class = "logical", has_length = 1)
meet_criteria(combine_IR, allow_class = "logical", has_length = 1)
@ -327,7 +327,7 @@ facet_rsi <- function(facet = c("interpretation", "antibiotic"), nrow = NULL) {
facet <- facet[1]
stop_ifnot_installed("ggplot2")
meet_criteria(facet, allow_class = "character", has_length = 1)
meet_criteria(nrow, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE)
meet_criteria(nrow, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE, is_positive = TRUE, is_finite = TRUE)
# we work with aes_string later on
facet_deparse <- deparse(substitute(facet))
@ -414,11 +414,11 @@ labels_rsi_count <- function(position = NULL,
meet_criteria(position, allow_class = "character", has_length = 1, is_in = c("fill", "stack", "dodge"), allow_NULL = TRUE)
meet_criteria(x, allow_class = "character", has_length = 1)
meet_criteria(translate_ab, allow_class = c("character", "logical"), has_length = 1, allow_NA = TRUE)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_finite = TRUE)
meet_criteria(language, has_length = 1, is_in = c(LANGUAGES_SUPPORTED, ""), allow_NULL = TRUE, allow_NA = TRUE)
meet_criteria(combine_SI, allow_class = "logical", has_length = 1)
meet_criteria(combine_IR, allow_class = "logical", has_length = 1)
meet_criteria(datalabels.size, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(datalabels.size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(datalabels.colour, allow_class = "character", has_length = 1)
if (is.null(position)) {

View File

@ -27,7 +27,7 @@
#'
#' These function can be used to determine first isolates (see [first_isolate()]). Using key antibiotics to determine first isolates is more reliable than without key antibiotics. These selected isolates can then be called first 'weighted' isolates.
#' @inheritSection lifecycle Stable Lifecycle
#' @param x a [data.frame] with antibiotics columns, like `AMX` or `amox`. Can be left blank when used inside `dplyr` verbs, such as `filter()`, `mutate()` and `summarise()`.
#' @param x a [data.frame] with antibiotics columns, like `AMX` or `amox`. Can be left blank to determine automatically
#' @param y,z character vectors to compare
#' @inheritParams first_isolate
#' @param universal_1,universal_2,universal_3,universal_4,universal_5,universal_6 column names of **broad-spectrum** antibiotics, case-insensitive. See details for which antibiotics will be used at default (which are guessed with [guess_ab_col()]).
@ -36,7 +36,7 @@
#' @param warnings give a warning about missing antibiotic columns (they will be ignored)
#' @param ... other arguments passed on to functions
#' @details
#' The [key_antibiotics()] function is context-aware when used inside `dplyr` verbs, such as `filter()`, `mutate()` and `summarise()`. This means that then the `x` argument can be left blank, see *Examples*.
#' The [key_antibiotics()] function is context-aware. This means that then the `x` argument can be left blank, see *Examples*.
#'
#' The function [key_antibiotics()] returns a character vector with 12 antibiotic results for every isolate. These isolates can then be compared using [key_antibiotics_equal()], to check if two isolates have generally the same antibiogram. Missing and invalid values are replaced with a dot (`"."`) by [key_antibiotics()] and ignored by [key_antibiotics_equal()].
#'
@ -77,7 +77,7 @@
#' @seealso [first_isolate()]
#' @inheritSection AMR Read more on Our Website!
#' @examples
#' # `example_isolates` is a dataset available in the AMR package.
#' # `example_isolates` is a data set available in the AMR package.
#' # See ?example_isolates.
#'
#' # output of the `key_antibiotics()` function could be like this:
@ -158,7 +158,7 @@ key_antibiotics <- function(x,
dots <- unlist(list(...))
if (length(dots) != 0) {
# backwards compatibility with old arguments
dots.names <- dots %pm>% names()
dots.names <- names(dots)
if ("info" %in% dots.names) {
warnings <- dots[which(dots.names == "info")]
}
@ -291,7 +291,7 @@ key_antibiotics_equal <- function(y,
meet_criteria(z, allow_class = "character")
meet_criteria(type, allow_class = "character", has_length = c(1, 2))
meet_criteria(ignore_I, allow_class = "logical", has_length = 1)
meet_criteria(points_threshold, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(points_threshold, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(info, allow_class = "logical", has_length = 1)
stop_ifnot(length(y) == length(z), "length of `y` and `z` must be equal")

View File

@ -37,7 +37,7 @@
#' @param verbose a logical to turn Verbose mode on and off (default is off). In Verbose mode, the function does not return the MDRO results, but instead returns a data set in logbook form with extensive info about which isolates would be MDRO-positive, or why they are not.
#' @inheritSection eucast_rules Antibiotics
#' @details
#' These functions are context-aware when used inside `dplyr` verbs, such as `filter()`, `mutate()` and `summarise()`. This means that then the `x` argument can be left blank, see *Examples*.
#' These functions are context-aware. This means that then the `x` argument can be left blank, see *Examples*.
#'
#' For the `pct_required_classes` argument, values above 1 will be divided by 100. This is to support both fractions (`0.75` or `3/4`) and percentages (`75`).
#'
@ -108,7 +108,7 @@
#' #> 43 891 1066
#' ```
#'
#' The rules set (the `custom` object in this case) could be exported to a shared file location using [saveRDS()] if you collaborate with multiple users. The custom rules set could then be imported using [readRDS()],
#' The rules set (the `custom` object in this case) could be exported to a shared file location using [saveRDS()] if you collaborate with multiple users. The custom rules set could then be imported using [readRDS()].
#' @inheritSection as.rsi Interpretation of R and S/I
#' @return
#' - CMI 2012 paper - function [mdr_cmi2012()] or [mdro()]:\cr

View File

@ -62,7 +62,7 @@ as.mic <- function(x, na.rm = FALSE) {
if (is.mic(x)) {
x
} else {
x <- x %pm>% unlist()
x <- unlist(x)
if (na.rm == TRUE) {
x <- x[!is.na(x)]
}

2
R/mo.R
View File

@ -1546,7 +1546,7 @@ exec_as.mo <- function(x,
message_(word_wrap("- Try to use as many valid taxonomic names as possible for your input.",
extra_indent = 2),
as_note = FALSE)
message_(word_wrap("- Save the output and use it as input for future calculations, e.g. create a new variable to your data using `as.mo()`. All functions in this package that rely on microorganism codes will automatically use that new column where possible. All `mo_*()` functions also do not require you to set their `x` argument as long as you have the dplyr package installed and you have a column of class <mo>.",
message_(word_wrap("- Save the output and use it as input for future calculations, e.g. create a new variable to your data using `as.mo()`. All functions in this package that rely on microorganism codes will automatically use that new column where possible. All `mo_*()` functions also do not require you to set their `x` argument as long as you have a column of class <mo>.",
extra_indent = 2),
as_note = FALSE)
message_(word_wrap("- Use `set_mo_source()` to continually transform your organisation codes to microorganisms codes used by this package, see `?mo_source`.",

View File

@ -200,8 +200,8 @@ set_mo_source <- function(path, destination = getOption("AMR_mo_source", "~/mo_s
"', for which your permission is needed.")),
"\n\n",
word_wrap("Do you agree that this file will be created?"))
if ("rsasdtudioapi" %in% rownames(utils::installed.packages())) {
showQuestion <- import_fn("showQuestion", "rstudioapi")
showQuestion <- import_fn("showQuestion", "rstudioapi", error_on_fail = FALSE)
if (!is.null(showQuestion)) {
q_continue <- showQuestion("Create new file in home directory", txt)
} else {
q_continue <- utils::menu(choices = c("OK", "Cancel"), graphics = FALSE, title = txt)

View File

@ -38,7 +38,7 @@
#' @export
#' @inheritSection AMR Read more on Our Website!
#' @examples
#' # `example_isolates` is a dataset available in the AMR package.
#' # `example_isolates` is a data set available in the AMR package.
#' # See ?example_isolates.
#'
#' \donttest{

View File

@ -129,10 +129,10 @@ resistance_predict <- function(x,
meet_criteria(x, allow_class = "data.frame")
meet_criteria(col_ab, allow_class = "character", has_length = 1, is_in = colnames(x))
meet_criteria(col_date, allow_class = "character", has_length = 1, is_in = colnames(x), allow_NULL = TRUE)
meet_criteria(year_min, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE)
meet_criteria(year_max, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE)
meet_criteria(year_every, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(year_min, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE, is_positive = TRUE, is_finite = TRUE)
meet_criteria(year_max, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE, is_positive = TRUE, is_finite = TRUE)
meet_criteria(year_every, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_finite = TRUE)
meet_criteria(model, allow_class = c("character", "function"), has_length = 1, allow_NULL = TRUE)
meet_criteria(I_as_S, allow_class = "logical", has_length = 1)
meet_criteria(preserve_measurements, allow_class = "logical", has_length = 1)
@ -143,7 +143,7 @@ resistance_predict <- function(x,
dots <- unlist(list(...))
if (length(dots) != 0) {
# backwards compatibility with old arguments
dots.names <- dots %pm>% names()
dots.names <- names(dots)
if ("tbl" %in% dots.names) {
x <- dots[which(dots.names == "tbl")]
}

View File

@ -29,7 +29,7 @@
#' @inheritSection lifecycle Stable Lifecycle
#' @rdname as.rsi
#' @param x vector of values (for class [`mic`]: an MIC value in mg/L, for class [`disk`]: a disk diffusion radius in millimetres)
#' @param mo any (vector of) text that can be coerced to a valid microorganism code with [as.mo()], will be determined automatically if the `dplyr` package is installed
#' @param mo any (vector of) text that can be coerced to a valid microorganism code with [as.mo()], can be left empty to determine it automatically
#' @param ab any (vector of) text that can be coerced to a valid antimicrobial code with [as.ab()]
#' @param uti (Urinary Tract Infection) A vector with [logical]s (`TRUE` or `FALSE`) to specify whether a UTI specific interpretation from the guideline should be chosen. For using [as.rsi()] on a [data.frame], this can also be a column containing [logical]s or when left blank, the data set will be searched for a 'specimen' and rows containing 'urin' (such as 'urine', 'urina') in that column will be regarded isolates from a UTI. See *Examples*.
#' @inheritParams first_isolate
@ -479,7 +479,7 @@ as.rsi.data.frame <- function(x,
uti = NULL,
conserve_capped_values = FALSE,
add_intrinsic_resistance = FALSE,
reference_data = rsi_translation) {
reference_data = AMR::rsi_translation) {
meet_criteria(x, allow_class = "data.frame") # will also check for dimensions > 0
meet_criteria(col_mo, allow_class = "character", is_in = colnames(x), allow_NULL = TRUE)
meet_criteria(guideline, allow_class = "character", has_length = 1)
@ -994,7 +994,7 @@ plot.rsi <- function(x,
main = paste("Resistance Overview of", deparse(substitute(x))),
axes = FALSE,
...) {
meet_criteria(lwd, allow_class = c("numeric", "integer"), has_length = 1)
meet_criteria(lwd, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(ylim, allow_class = c("numeric", "integer"), allow_NULL = TRUE)
meet_criteria(ylab, allow_class = "character", has_length = 1)
meet_criteria(xlab, allow_class = "character", has_length = 1)

View File

@ -37,7 +37,7 @@ rsi_calc <- function(...,
only_all_tested = FALSE,
only_count = FALSE) {
meet_criteria(ab_result, allow_class = c("character", "numeric", "integer"), has_length = c(1, 2, 3), .call_depth = 1)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, .call_depth = 1)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_finite = TRUE, .call_depth = 1)
meet_criteria(as_percent, allow_class = "logical", has_length = 1, .call_depth = 1)
meet_criteria(only_all_tested, allow_class = "logical", has_length = 1, .call_depth = 1)
meet_criteria(only_count, allow_class = "logical", has_length = 1, .call_depth = 1)
@ -191,7 +191,7 @@ rsi_calc_df <- function(type, # "proportion", "count" or "both"
meet_criteria(data, allow_class = "data.frame", contains_column_class = "rsi", .call_depth = 1)
meet_criteria(translate_ab, allow_class = c("character", "logical"), has_length = 1, allow_NA = TRUE, .call_depth = 1)
meet_criteria(language, has_length = 1, is_in = c(LANGUAGES_SUPPORTED, ""), allow_NULL = TRUE, allow_NA = TRUE, .call_depth = 1)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, .call_depth = 1)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_finite = TRUE, .call_depth = 1)
meet_criteria(as_percent, allow_class = "logical", has_length = 1, .call_depth = 1)
meet_criteria(combine_SI, allow_class = "logical", has_length = 1, .call_depth = 1)
meet_criteria(combine_SI_missing, allow_class = "logical", has_length = 1, .call_depth = 1)

View File

@ -81,7 +81,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="https://msberends.github.io/AMR//index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9009</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>

View File

@ -81,7 +81,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9009</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>

View File

@ -39,7 +39,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>
@ -201,15 +201,15 @@
<p>With the function <code><a href="../reference/mdro.html">mdro()</a></code>, you can determine which micro-organisms are multi-drug resistant organisms (MDRO).</p>
<div id="type-of-input" class="section level4">
<h4 class="hasAnchor">
<a href="#type-of-input" class="anchor"></a>Type of input</h4>
<div id="type-of-input" class="section level3">
<h3 class="hasAnchor">
<a href="#type-of-input" class="anchor"></a>Type of input</h3>
<p>The <code><a href="../reference/mdro.html">mdro()</a></code> function takes a data set as input, such as a regular <code>data.frame</code>. It tries to automatically determine the right columns for info about your isolates, like the name of the species and all columns with results of antimicrobial agents. See the help page for more info about how to set the right settings for your data with the command <code><a href="../reference/mdro.html">?mdro</a></code>.</p>
<p>For WHONET data (and most other data), all settings are automatically set correctly.</p>
</div>
<div id="guidelines" class="section level4">
<h4 class="hasAnchor">
<a href="#guidelines" class="anchor"></a>Guidelines</h4>
<div id="guidelines" class="section level3">
<h3 class="hasAnchor">
<a href="#guidelines" class="anchor"></a>Guidelines</h3>
<p>The function support multiple guidelines. You can select a guideline with the <code>guideline</code> parameter. Currently supported guidelines are (case-insensitive):</p>
<ul>
<li>
@ -238,16 +238,44 @@
</li>
</ul>
<p>Please suggest your own (country-specific) guidelines by letting us know: <a href="https://github.com/msberends/AMR/issues/new" class="uri">https://github.com/msberends/AMR/issues/new</a>.</p>
</div>
<div id="examples" class="section level4">
<div id="custom-guidelines" class="section level4">
<h4 class="hasAnchor">
<a href="#examples" class="anchor"></a>Examples</h4>
<a href="#custom-guidelines" class="anchor"></a>Custom Guidelines</h4>
<p>You can also use your own custom guideline. Custom guidelines can be set with the <code><a href="../reference/mdro.html">custom_mdro_guideline()</a></code> function. This is of great importance if you have custom rules to determine MDROs in your hospital, e.g., rules that are dependent on ward, state of contact isolation or other variables in your data.</p>
<p>If you are familiar with <code><a href="https://dplyr.tidyverse.org/reference/case_when.html">case_when()</a></code> of the <code>dplyr</code> package, you will recognise the input method to set your own rules. Rules must be set using what considers to be the formula notation:</p>
<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="va">custom</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mdro.html">custom_mdro_guideline</a></span><span class="op">(</span><span class="va">CIP</span> <span class="op">==</span> <span class="st">"R"</span> <span class="op">&amp;</span> <span class="va">age</span> <span class="op">&gt;</span> <span class="fl">60</span> <span class="op">~</span> <span class="st">"Elderly Type A"</span>,
<span class="va">ERY</span> <span class="op">==</span> <span class="st">"R"</span> <span class="op">&amp;</span> <span class="va">age</span> <span class="op">&gt;</span> <span class="fl">60</span> <span class="op">~</span> <span class="st">"Elderly Type B"</span><span class="op">)</span></code></pre></div>
<p>If a row/an isolate matches the first rule, the value after the first <code><a href="https://rdrr.io/r/base/tilde.html">~</a></code> (in this case <em>Elderly Type A</em>) will be set as MDRO value. Otherwise, the second rule will be tried and so on. The number of rules is unlimited.</p>
<p>You can print the rules set in the console for an overview. Colours will help reading it if your console supports colours.</p>
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="va">custom</span>
<span class="co"># A set of custom MDRO rules:</span>
<span class="co"># 1. CIP is "R" and age is higher than 60 -&gt; Elderly Type A</span>
<span class="co"># 2. ERY is "R" and age is higher than 60 -&gt; Elderly Type B</span>
<span class="co"># 3. Otherwise -&gt; Negative</span>
<span class="co"># </span>
<span class="co"># Unmatched rows will return NA.</span>
<span class="co"># Results will be of class &lt;factor&gt;, with ordered levels: Negative &lt; Elderly Type A &lt; Elderly Type B</span></code></pre></div>
<p>The outcome of the function can be used for the <code>guideline</code> argument in the [mdro()] function:</p>
<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="va">x</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mdro.html">mdro</a></span><span class="op">(</span><span class="va">example_isolates</span>, guideline <span class="op">=</span> <span class="va">custom</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/r/base/table.html">table</a></span><span class="op">(</span><span class="va">x</span><span class="op">)</span>
<span class="co"># x</span>
<span class="co"># Negative Elderly Type A Elderly Type B </span>
<span class="co"># 1066 43 891</span></code></pre></div>
<p>The rules set (the <code>custom</code> object in this case) could be exported to a shared file location using <code><a href="https://rdrr.io/r/base/readRDS.html">saveRDS()</a></code> if you collaborate with multiple users. The custom rules set could then be imported using <code><a href="https://rdrr.io/r/base/readRDS.html">readRDS()</a></code>.</p>
</div>
</div>
<div id="examples" class="section level3">
<h3 class="hasAnchor">
<a href="#examples" class="anchor"></a>Examples</h3>
<p>The <code><a href="../reference/mdro.html">mdro()</a></code> function always returns an ordered <code>factor</code>. For example, the output of the default guideline by Magiorakos <em>et al.</em> returns a <code>factor</code> with levels Negative, MDR, XDR or PDR in that order.</p>
<p>The next example uses the <code>example_isolates</code> data set. This is a data set included with this package and contains 2,000 microbial isolates with their full antibiograms. It reflects reality and can be used to practice AMR analysis. If we test the MDR/XDR/PDR guideline on this data set, we get:</p>
<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="kw"><a href="https://rdrr.io/r/base/library.html">library</a></span><span class="op">(</span><span class="va"><a href="https://dplyr.tidyverse.org">dplyr</a></span><span class="op">)</span> <span class="co"># to support pipes: %&gt;%</span>
<span class="kw"><a href="https://rdrr.io/r/base/library.html">library</a></span><span class="op">(</span><span class="va"><a href="https://github.com/msberends/cleaner">cleaner</a></span><span class="op">)</span> <span class="co"># to create frequency tables</span></code></pre></div>
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="va">example_isolates</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="../reference/mdro.html">mdro</a></span><span class="op">(</span><span class="op">)</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq</a></span><span class="op">(</span><span class="op">)</span> <span class="co"># show frequency table of the result</span>
@ -272,23 +300,23 @@ Unique: 2</p>
<tr class="odd">
<td align="left">1</td>
<td align="left">Negative</td>
<td align="right">1616</td>
<td align="right">92.50%</td>
<td align="right">1616</td>
<td align="right">92.50%</td>
<td align="right">1617</td>
<td align="right">92.56%</td>
<td align="right">1617</td>
<td align="right">92.56%</td>
</tr>
<tr class="even">
<td align="left">2</td>
<td align="left">Multi-drug-resistant (MDR)</td>
<td align="right">131</td>
<td align="right">7.50%</td>
<td align="right">130</td>
<td align="right">7.44%</td>
<td align="right">1747</td>
<td align="right">100.00%</td>
</tr>
</tbody>
</table>
<p>For another example, I will create a data set to determine multi-drug resistant TB:</p>
<div class="sourceCode" id="cb3"><pre class="downlit sourceCode r">
<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="co"># random_rsi() is a helper function to generate</span>
<span class="co"># a random vector with values S, I and R</span>
<span class="va">my_TB_data</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html">data.frame</a></span><span class="op">(</span>rifampicin <span class="op">=</span> <span class="fu"><a href="../reference/random.html">random_rsi</a></span><span class="op">(</span><span class="fl">5000</span><span class="op">)</span>,
@ -299,7 +327,7 @@ Unique: 2</p>
moxifloxacin <span class="op">=</span> <span class="fu"><a href="../reference/random.html">random_rsi</a></span><span class="op">(</span><span class="fl">5000</span><span class="op">)</span>,
kanamycin <span class="op">=</span> <span class="fu"><a href="../reference/random.html">random_rsi</a></span><span class="op">(</span><span class="fl">5000</span><span class="op">)</span><span class="op">)</span></code></pre></div>
<p>Because all column names are automatically verified for valid drug names or codes, this would have worked exactly the same:</p>
<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">
<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="va">my_TB_data</span> <span class="op">&lt;-</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html">data.frame</a></span><span class="op">(</span>RIF <span class="op">=</span> <span class="fu"><a href="../reference/random.html">random_rsi</a></span><span class="op">(</span><span class="fl">5000</span><span class="op">)</span>,
INH <span class="op">=</span> <span class="fu"><a href="../reference/random.html">random_rsi</a></span><span class="op">(</span><span class="fl">5000</span><span class="op">)</span>,
GAT <span class="op">=</span> <span class="fu"><a href="../reference/random.html">random_rsi</a></span><span class="op">(</span><span class="fl">5000</span><span class="op">)</span>,
@ -308,32 +336,32 @@ Unique: 2</p>
MFX <span class="op">=</span> <span class="fu"><a href="../reference/random.html">random_rsi</a></span><span class="op">(</span><span class="fl">5000</span><span class="op">)</span>,
KAN <span class="op">=</span> <span class="fu"><a href="../reference/random.html">random_rsi</a></span><span class="op">(</span><span class="fl">5000</span><span class="op">)</span><span class="op">)</span></code></pre></div>
<p>The data set now looks like this:</p>
<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">
<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/r/utils/head.html">head</a></span><span class="op">(</span><span class="va">my_TB_data</span><span class="op">)</span>
<span class="co"># rifampicin isoniazid gatifloxacin ethambutol pyrazinamide moxifloxacin</span>
<span class="co"># 1 S R S S I R</span>
<span class="co"># 2 R I S I S I</span>
<span class="co"># 3 I I R S I S</span>
<span class="co"># 4 R S R I R S</span>
<span class="co"># 5 I R I I I R</span>
<span class="co"># 6 I R I R S R</span>
<span class="co"># 1 I R I R I I</span>
<span class="co"># 2 R R I S R I</span>
<span class="co"># 3 I S S I S I</span>
<span class="co"># 4 I I R S R I</span>
<span class="co"># 5 I R I S S I</span>
<span class="co"># 6 S I I I R R</span>
<span class="co"># kanamycin</span>
<span class="co"># 1 R</span>
<span class="co"># 2 I</span>
<span class="co"># 3 I</span>
<span class="co"># 4 I</span>
<span class="co"># 1 I</span>
<span class="co"># 2 R</span>
<span class="co"># 3 S</span>
<span class="co"># 4 R</span>
<span class="co"># 5 S</span>
<span class="co"># 6 S</span></code></pre></div>
<span class="co"># 6 I</span></code></pre></div>
<p>We can now add the interpretation of MDR-TB to our data set. You can use:</p>
<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r">
<div class="sourceCode" id="cb9"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="../reference/mdro.html">mdro</a></span><span class="op">(</span><span class="va">my_TB_data</span>, guideline <span class="op">=</span> <span class="st">"TB"</span><span class="op">)</span></code></pre></div>
<p>or its shortcut <code><a href="../reference/mdro.html">mdr_tb()</a></code>:</p>
<div class="sourceCode" id="cb7"><pre class="downlit sourceCode r">
<div class="sourceCode" id="cb10"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="va">my_TB_data</span><span class="op">$</span><span class="va">mdr</span> <span class="op">&lt;-</span> <span class="fu"><a href="../reference/mdro.html">mdr_tb</a></span><span class="op">(</span><span class="va">my_TB_data</span><span class="op">)</span>
<span class="co"># NOTE: No column found as input for `col_mo`, assuming all records contain</span>
<span class="co"># Mycobacterium tuberculosis.</span></code></pre></div>
<span class="co"># NOTE: No column found as input for `col_mo`, assuming all records</span>
<span class="co"># containMycobacterium tuberculosis.</span></code></pre></div>
<p>Create a frequency table of the results:</p>
<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r">
<div class="sourceCode" id="cb11"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span class="fu"><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq</a></span><span class="op">(</span><span class="va">my_TB_data</span><span class="op">$</span><span class="va">mdr</span><span class="op">)</span></code></pre></div>
<p><strong>Frequency table</strong></p>
<p>Class: factor &gt; ordered (numeric)<br>
@ -354,40 +382,40 @@ Unique: 5</p>
<tr class="odd">
<td align="left">1</td>
<td align="left">Mono-resistant</td>
<td align="right">3286</td>
<td align="right">65.72%</td>
<td align="right">3286</td>
<td align="right">65.72%</td>
<td align="right">3228</td>
<td align="right">64.56%</td>
<td align="right">3228</td>
<td align="right">64.56%</td>
</tr>
<tr class="even">
<td align="left">2</td>
<td align="left">Negative</td>
<td align="right">992</td>
<td align="right">19.84%</td>
<td align="right">4278</td>
<td align="right">85.56%</td>
<td align="right">1017</td>
<td align="right">20.34%</td>
<td align="right">4245</td>
<td align="right">84.90%</td>
</tr>
<tr class="odd">
<td align="left">3</td>
<td align="left">Multi-drug-resistant</td>
<td align="right">424</td>
<td align="right">8.48%</td>
<td align="right">4702</td>
<td align="right">94.04%</td>
<td align="right">421</td>
<td align="right">8.42%</td>
<td align="right">4666</td>
<td align="right">93.32%</td>
</tr>
<tr class="even">
<td align="left">4</td>
<td align="left">Poly-resistant</td>
<td align="right">214</td>
<td align="right">4.28%</td>
<td align="right">4916</td>
<td align="right">98.32%</td>
<td align="right">231</td>
<td align="right">4.62%</td>
<td align="right">4897</td>
<td align="right">97.94%</td>
</tr>
<tr class="odd">
<td align="left">5</td>
<td align="left">Extensively drug-resistant</td>
<td align="right">84</td>
<td align="right">1.68%</td>
<td align="right">103</td>
<td align="right">2.06%</td>
<td align="right">5000</td>
<td align="right">100.00%</td>
</tr>

View File

@ -39,7 +39,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9009</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>
@ -193,7 +193,7 @@
<h1 data-toc-skip>How to import data from SPSS / SAS / Stata</h1>
<h4 class="author">Matthijs S. Berends</h4>
<h4 class="date">22 January 2021</h4>
<h4 class="date">24 January 2021</h4>
<small class="dont-index">Source: <a href="https://github.com/msberends/AMR/blob/master/vignettes/SPSS.Rmd"><code>vignettes/SPSS.Rmd</code></a></small>
<div class="hidden name"><code>SPSS.Rmd</code></div>
@ -228,7 +228,7 @@
</li>
<li>
<p><strong>R has a huge community.</strong></p>
<p>Many R users just ask questions on websites like <a href="https://stackoverflow.com">StackOverflow.com</a>, the largest online community for programmers. At the time of writing, <a href="https://stackoverflow.com/questions/tagged/r?sort=votes">383,346 R-related questions</a> have already been asked on this platform (that covers questions and answers for any programming language). In my own experience, most questions are answered within a couple of minutes.</p>
<p>Many R users just ask questions on websites like <a href="https://stackoverflow.com">StackOverflow.com</a>, the largest online community for programmers. At the time of writing, <a href="https://stackoverflow.com/questions/tagged/r?sort=votes">384,445 R-related questions</a> have already been asked on this platform (that covers questions and answers for any programming language). In my own experience, most questions are answered within a couple of minutes.</p>
</li>
<li>
<p><strong>R understands any data type, including SPSS/SAS/Stata.</strong></p>

View File

@ -81,7 +81,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9009</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>

View File

@ -81,7 +81,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9009</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>

View File

@ -43,7 +43,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9009</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>

View File

@ -81,7 +81,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9009</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>
@ -236,13 +236,13 @@
<small>Source: <a href='https://github.com/msberends/AMR/blob/master/NEWS.md'><code>NEWS.md</code></a></small>
</div>
<div id="amr-1509009" class="section level1">
<h1 class="page-header" data-toc-text="1.5.0.9009">
<a href="#amr-1509009" class="anchor"></a>AMR 1.5.0.9009<small> Unreleased </small>
<div id="amr-1509010" class="section level1">
<h1 class="page-header" data-toc-text="1.5.0.9010">
<a href="#amr-1509010" class="anchor"></a>AMR 1.5.0.9010<small> Unreleased </small>
</h1>
<div id="last-updated-22-january-2021" class="section level2">
<div id="last-updated-24-january-2021" class="section level2">
<h2 class="hasAnchor">
<a href="#last-updated-22-january-2021" class="anchor"></a><small>Last updated: 22 January 2021</small>
<a href="#last-updated-24-january-2021" class="anchor"></a><small>Last updated: 24 January 2021</small>
</h2>
<div id="new" class="section level3">
<h3 class="hasAnchor">
@ -288,6 +288,7 @@
<li>Fix for verbose output of <code><a href="../reference/mdro.html">mdro(..., verbose = TRUE)</a></code> for German guideline (3MGRN and 4MGRN) and Dutch guideline (BRMO, only <em>P. aeruginosa</em>)</li>
<li>
<code><a href="../reference/as.rsi.html">is.rsi.eligible()</a></code> now returns <code>FALSE</code> immediately if the input does not contain any of the values “R”, “S” or “I”. This drastically improves speed, also for a lot of other functions that rely on automatic determination of antibiotic columns.</li>
<li>Functions <code><a href="../reference/get_episode.html">get_episode()</a></code> and <code><a href="../reference/get_episode.html">is_new_episode()</a></code> now support less than a day as value for argument <code>episode_days</code> (e.g., to include one patient/test per hour)</li>
</ul>
</div>
<div id="other" class="section level3">
@ -614,7 +615,7 @@
<p>Making this package independent of especially the tidyverse (e.g. packages <code>dplyr</code> and <code>tidyr</code>) tremendously increases sustainability on the long term, since tidyverse functions change quite often. Good for users, but hard for package maintainers. Most of our functions are replaced with versions that only rely on base R, which keeps this package fully functional for many years to come, without requiring a lot of maintenance to keep up with other packages anymore. Another upside it that this package can now be used with all versions of R since R-3.0.0 (April 2013). Our package is being used in settings where the resources are very limited. Fewer dependencies on newer software is helpful for such settings.</p>
<p>Negative effects of this change are:</p>
<ul>
<li>Function <code>freq()</code> that was borrowed from the <code>cleaner</code> package was removed. Use <code><a href="https://rdrr.io/pkg/cleaner/man/freq.html">cleaner::freq()</a></code>, or run <code><a href="https://github.com/msberends/cleaner">library("cleaner")</a></code> before you use <code>freq()</code>.</li>
<li>Function <code><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq()</a></code> that was borrowed from the <code>cleaner</code> package was removed. Use <code><a href="https://rdrr.io/pkg/cleaner/man/freq.html">cleaner::freq()</a></code>, or run <code><a href="https://github.com/msberends/cleaner">library("cleaner")</a></code> before you use <code><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq()</a></code>.</li>
<li><del>Printing values of class <code>mo</code> or <code>rsi</code> in a tibble will no longer be in colour and printing <code>rsi</code> in a tibble will show the class <code>&lt;ord&gt;</code>, not <code>&lt;rsi&gt;</code> anymore. This is purely a visual effect.</del></li>
<li><del>All functions from the <code>mo_*</code> family (like <code><a href="../reference/mo_property.html">mo_name()</a></code> and <code><a href="../reference/mo_property.html">mo_gramstain()</a></code>) are noticeably slower when running on hundreds of thousands of rows.</del></li>
<li>For developers: classes <code>mo</code> and <code>ab</code> now both also inherit class <code>character</code>, to support any data transformation. This change invalidates code that checks for class length == 1.</li>
@ -951,7 +952,7 @@ This works for all drug combinations, such as ampicillin/sulbactam, ceftazidime/
<span class="co">#&gt; invalid microorganism code, NA generated</span></code></pre></div>
<p>This is important, because a value like <code>"testvalue"</code> could never be understood by e.g. <code><a href="../reference/mo_property.html">mo_name()</a></code>, although the class would suggest a valid microbial code.</p>
</li>
<li><p>Function <code>freq()</code> has moved to a new package, <a href="https://github.com/msberends/clean"><code>clean</code></a> (<a href="https://cran.r-project.org/package=clean">CRAN link</a>), since creating frequency tables actually does not fit the scope of this package. The <code>freq()</code> function still works, since it is re-exported from the <code>clean</code> package (which will be installed automatically upon updating this <code>AMR</code> package).</p></li>
<li><p>Function <code><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq()</a></code> has moved to a new package, <a href="https://github.com/msberends/clean"><code>clean</code></a> (<a href="https://cran.r-project.org/package=clean">CRAN link</a>), since creating frequency tables actually does not fit the scope of this package. The <code><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq()</a></code> function still works, since it is re-exported from the <code>clean</code> package (which will be installed automatically upon updating this <code>AMR</code> package).</p></li>
<li><p>Renamed data set <code>septic_patients</code> to <code>example_isolates</code></p></li>
</ul>
</div>
@ -1220,7 +1221,7 @@ This works for all drug combinations, such as ampicillin/sulbactam, ceftazidime/
<li>The <code><a href="../reference/age.html">age()</a></code> function gained a new argument <code>exact</code> to determine ages with decimals</li>
<li>Removed deprecated functions <code>guess_mo()</code>, <code>guess_atc()</code>, <code>EUCAST_rules()</code>, <code>interpretive_reading()</code>, <code><a href="../reference/as.rsi.html">rsi()</a></code>
</li>
<li>Frequency tables (<code>freq()</code>):
<li>Frequency tables (<code><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq()</a></code>):
<ul>
<li><p>speed improvement for microbial IDs</p></li>
<li><p>fixed factor level names for R Markdown</p></li>
@ -1230,12 +1231,12 @@ This works for all drug combinations, such as ampicillin/sulbactam, ceftazidime/
<div class="sourceCode" id="cb25"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="va">septic_patients</span> <span class="op">%&gt;%</span>
<span class="fu">freq</span><span class="op">(</span><span class="va">age</span><span class="op">)</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq</a></span><span class="op">(</span><span class="va">age</span><span class="op">)</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="https://rdrr.io/r/graphics/boxplot.html">boxplot</a></span><span class="op">(</span><span class="op">)</span>
<span class="co"># grouped boxplots:</span>
<span class="va">septic_patients</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="https://dplyr.tidyverse.org/reference/group_by.html">group_by</a></span><span class="op">(</span><span class="va">hospital_id</span><span class="op">)</span> <span class="op">%&gt;%</span>
<span class="fu">freq</span><span class="op">(</span><span class="va">age</span><span class="op">)</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq</a></span><span class="op">(</span><span class="va">age</span><span class="op">)</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="https://rdrr.io/r/graphics/boxplot.html">boxplot</a></span><span class="op">(</span><span class="op">)</span></code></pre></div>
</li>
</ul>
@ -1245,7 +1246,7 @@ This works for all drug combinations, such as ampicillin/sulbactam, ceftazidime/
<li>Added ceftazidim intrinsic resistance to <em>Streptococci</em>
</li>
<li>Changed default settings for <code><a href="../reference/age_groups.html">age_groups()</a></code>, to let groups of fives and tens end with 100+ instead of 120+</li>
<li>Fix for <code>freq()</code> for when all values are <code>NA</code>
<li>Fix for <code><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq()</a></code> for when all values are <code>NA</code>
</li>
<li>Fix for <code><a href="../reference/first_isolate.html">first_isolate()</a></code> for when dates are missing</li>
<li>Improved speed of <code><a href="../reference/guess_ab_col.html">guess_ab_col()</a></code>
@ -1486,7 +1487,7 @@ This works for all drug combinations, such as ampicillin/sulbactam, ceftazidime/
</li>
</ul>
</li>
<li>Frequency tables (<code>freq()</code> function):
<li>Frequency tables (<code><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq()</a></code> function):
<ul>
<li>
<p>Support for tidyverse quasiquotation! Now you can create frequency tables of function outcomes:</p>
@ -1496,15 +1497,15 @@ This works for all drug combinations, such as ampicillin/sulbactam, ceftazidime/
<span class="co"># OLD WAY</span>
<span class="va">septic_patients</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="https://dplyr.tidyverse.org/reference/mutate.html">mutate</a></span><span class="op">(</span>genus <span class="op">=</span> <span class="fu"><a href="../reference/mo_property.html">mo_genus</a></span><span class="op">(</span><span class="va">mo</span><span class="op">)</span><span class="op">)</span> <span class="op">%&gt;%</span>
<span class="fu">freq</span><span class="op">(</span><span class="va">genus</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq</a></span><span class="op">(</span><span class="va">genus</span><span class="op">)</span>
<span class="co"># NEW WAY</span>
<span class="va">septic_patients</span> <span class="op">%&gt;%</span>
<span class="fu">freq</span><span class="op">(</span><span class="fu"><a href="../reference/mo_property.html">mo_genus</a></span><span class="op">(</span><span class="va">mo</span><span class="op">)</span><span class="op">)</span>
<span class="fu"><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq</a></span><span class="op">(</span><span class="fu"><a href="../reference/mo_property.html">mo_genus</a></span><span class="op">(</span><span class="va">mo</span><span class="op">)</span><span class="op">)</span>
<span class="co"># Even supports grouping variables:</span>
<span class="va">septic_patients</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="https://dplyr.tidyverse.org/reference/group_by.html">group_by</a></span><span class="op">(</span><span class="va">gender</span><span class="op">)</span> <span class="op">%&gt;%</span>
<span class="fu">freq</span><span class="op">(</span><span class="fu"><a href="../reference/mo_property.html">mo_genus</a></span><span class="op">(</span><span class="va">mo</span><span class="op">)</span><span class="op">)</span></code></pre></div>
<span class="fu"><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq</a></span><span class="op">(</span><span class="fu"><a href="../reference/mo_property.html">mo_genus</a></span><span class="op">(</span><span class="va">mo</span><span class="op">)</span><span class="op">)</span></code></pre></div>
</li>
<li><p>Header info is now available as a list, with the <code>header</code> function</p></li>
<li><p>The argument <code>header</code> is now set to <code>TRUE</code> at default, even for markdown</p></li>
@ -1587,7 +1588,7 @@ This works for all drug combinations, such as ampicillin/sulbactam, ceftazidime/
<li><p>Using <code>portion_*</code> functions now throws a warning when total available isolate is below argument <code>minimum</code></p></li>
<li><p>Functions <code>as.mo</code>, <code>as.rsi</code>, <code>as.mic</code>, <code>as.atc</code> and <code>freq</code> will not set package name as attribute anymore</p></li>
<li>
<p>Frequency tables - <code>freq()</code>:</p>
<p>Frequency tables - <code><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq()</a></code>:</p>
<ul>
<li>
<p>Support for grouping variables, test with:</p>
@ -1595,14 +1596,14 @@ This works for all drug combinations, such as ampicillin/sulbactam, ceftazidime/
<code class="sourceCode R">
<span class="va">septic_patients</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="https://dplyr.tidyverse.org/reference/group_by.html">group_by</a></span><span class="op">(</span><span class="va">hospital_id</span><span class="op">)</span> <span class="op">%&gt;%</span>
<span class="fu">freq</span><span class="op">(</span><span class="va">gender</span><span class="op">)</span></code></pre></div>
<span class="fu"><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq</a></span><span class="op">(</span><span class="va">gender</span><span class="op">)</span></code></pre></div>
</li>
<li>
<p>Support for (un)selecting columns:</p>
<div class="sourceCode" id="cb38"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="va">septic_patients</span> <span class="op">%&gt;%</span>
<span class="fu">freq</span><span class="op">(</span><span class="va">hospital_id</span><span class="op">)</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq</a></span><span class="op">(</span><span class="va">hospital_id</span><span class="op">)</span> <span class="op">%&gt;%</span>
<span class="fu"><a href="https://dplyr.tidyverse.org/reference/select.html">select</a></span><span class="op">(</span><span class="op">-</span><span class="va">count</span>, <span class="op">-</span><span class="va">cum_count</span><span class="op">)</span> <span class="co"># only get item, percent, cum_percent</span></code></pre></div>
</li>
<li><p>Check for <code><a href="https://hms.tidyverse.org/reference/Deprecated.html">hms::is.hms</a></code></p></li>
@ -1620,7 +1621,7 @@ This works for all drug combinations, such as ampicillin/sulbactam, ceftazidime/
<li><p>Removed diacritics from all authors (columns <code>microorganisms$ref</code> and <code>microorganisms.old$ref</code>) to comply with CRAN policy to only allow ASCII characters</p></li>
<li><p>Fix for <code>mo_property</code> not working properly</p></li>
<li><p>Fix for <code>eucast_rules</code> where some Streptococci would become ceftazidime R in EUCAST rule 4.5</p></li>
<li><p>Support for named vectors of class <code>mo</code>, useful for <code>top_freq()</code></p></li>
<li><p>Support for named vectors of class <code>mo</code>, useful for <code><a href="https://rdrr.io/pkg/cleaner/man/freq.html">top_freq()</a></code></p></li>
<li><p><code>ggplot_rsi</code> and <code>scale_y_percent</code> have <code>breaks</code> argument</p></li>
<li>
<p>AI improvements for <code>as.mo</code>:</p>
@ -1788,13 +1789,13 @@ This works for all drug combinations, such as ampicillin/sulbactam, ceftazidime/
<div class="sourceCode" id="cb45"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="va">my_matrix</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/with.html">with</a></span><span class="op">(</span><span class="va">septic_patients</span>, <span class="fu"><a href="https://rdrr.io/r/base/matrix.html">matrix</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html">c</a></span><span class="op">(</span><span class="va">age</span>, <span class="va">gender</span><span class="op">)</span>, ncol <span class="op">=</span> <span class="fl">2</span><span class="op">)</span><span class="op">)</span>
<span class="fu">freq</span><span class="op">(</span><span class="va">my_matrix</span><span class="op">)</span></code></pre></div>
<span class="fu"><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq</a></span><span class="op">(</span><span class="va">my_matrix</span><span class="op">)</span></code></pre></div>
<p>For lists, subsetting is possible:</p>
<div class="sourceCode" id="cb46"><pre class="downlit sourceCode r">
<code class="sourceCode R">
<span class="va">my_list</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/list.html">list</a></span><span class="op">(</span>age <span class="op">=</span> <span class="va">septic_patients</span><span class="op">$</span><span class="va">age</span>, gender <span class="op">=</span> <span class="va">septic_patients</span><span class="op">$</span><span class="va">gender</span><span class="op">)</span>
<span class="va">my_list</span> <span class="op">%&gt;%</span> <span class="fu">freq</span><span class="op">(</span><span class="va">age</span><span class="op">)</span>
<span class="va">my_list</span> <span class="op">%&gt;%</span> <span class="fu">freq</span><span class="op">(</span><span class="va">gender</span><span class="op">)</span></code></pre></div>
<span class="va">my_list</span> <span class="op">%&gt;%</span> <span class="fu"><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq</a></span><span class="op">(</span><span class="va">age</span><span class="op">)</span>
<span class="va">my_list</span> <span class="op">%&gt;%</span> <span class="fu"><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq</a></span><span class="op">(</span><span class="va">gender</span><span class="op">)</span></code></pre></div>
</li>
</ul>
</div>
@ -1868,13 +1869,13 @@ This works for all drug combinations, such as ampicillin/sulbactam, ceftazidime/
<ul>
<li>A vignette to explain its usage</li>
<li>Support for <code>rsi</code> (antimicrobial resistance) to use as input</li>
<li>Support for <code>table</code> to use as input: <code>freq(table(x, y))</code>
<li>Support for <code>table</code> to use as input: <code><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq(table(x, y))</a></code>
</li>
<li>Support for existing functions <code>hist</code> and <code>plot</code> to use a frequency table as input: <code><a href="https://rdrr.io/r/graphics/hist.html">hist(freq(df$age))</a></code>
</li>
<li>Support for <code>as.vector</code>, <code>as.data.frame</code>, <code>as_tibble</code> and <code>format</code>
</li>
<li>Support for quasiquotation: <code>freq(mydata, mycolumn)</code> is the same as <code>mydata %&gt;% freq(mycolumn)</code>
<li>Support for quasiquotation: <code><a href="https://rdrr.io/pkg/cleaner/man/freq.html">freq(mydata, mycolumn)</a></code> is the same as <code>mydata %&gt;% freq(mycolumn)</code>
</li>
<li>Function <code>top_freq</code> function to return the top/below <em>n</em> items as vector</li>
<li>Header of frequency tables now also show Mean Absolute Deviaton (MAD) and Interquartile Range (IQR)</li>

View File

@ -12,7 +12,7 @@ articles:
datasets: datasets.html
resistance_predict: resistance_predict.html
welcome_to_AMR: welcome_to_AMR.html
last_built: 2021-01-22T09:54Z
last_built: 2021-01-24T13:47Z
urls:
reference: https://msberends.github.io/AMR//reference
article: https://msberends.github.io/AMR//articles

View File

@ -82,7 +82,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9008</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>
@ -306,7 +306,7 @@ The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>stable</s
<div class='dont-index'><p><code><a href='filter_ab_class.html'>filter_ab_class()</a></code> for the <code><a href='https://dplyr.tidyverse.org/reference/filter.html'>filter()</a></code> equivalent.</p></div>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><span class='co'># `example_isolates` is a dataset available in the AMR package.</span>
<pre class="examples"><span class='co'># `example_isolates` is a data set available in the AMR package.</span>
<span class='co'># See ?example_isolates.</span>
<span class='co'># this will select columns 'IPM' (imipenem) and 'MEM' (meropenem):</span>

View File

@ -82,7 +82,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9008</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>
@ -282,7 +282,7 @@
uti <span class='op'>=</span> <span class='cn'>NULL</span>,
conserve_capped_values <span class='op'>=</span> <span class='cn'>FALSE</span>,
add_intrinsic_resistance <span class='op'>=</span> <span class='cn'>FALSE</span>,
reference_data <span class='op'>=</span> <span class='va'>rsi_translation</span>
reference_data <span class='op'>=</span> <span class='fu'>AMR</span><span class='fu'>::</span><span class='va'><a href='rsi_translation.html'>rsi_translation</a></span>
<span class='op'>)</span></pre>
<h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>
@ -302,7 +302,7 @@
</tr>
<tr>
<th>mo</th>
<td><p>any (vector of) text that can be coerced to a valid microorganism code with <code><a href='as.mo.html'>as.mo()</a></code>, will be determined automatically if the <code>dplyr</code> package is installed</p></td>
<td><p>any (vector of) text that can be coerced to a valid microorganism code with <code><a href='as.mo.html'>as.mo()</a></code>, can be left empty to determine it automatically</p></td>
</tr>
<tr>
<th>ab</th>

View File

@ -82,7 +82,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9008</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>
@ -366,7 +366,7 @@
<p>A <code><a href='https://rdrr.io/r/base/logical.html'>logical</a></code> vector</p>
<h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2>
<p>These functions are context-aware when used inside <code>dplyr</code> verbs, such as <code><a href='https://dplyr.tidyverse.org/reference/filter.html'>filter()</a></code>, <code><a href='https://dplyr.tidyverse.org/reference/mutate.html'>mutate()</a></code> and <code><a href='https://dplyr.tidyverse.org/reference/summarise.html'>summarise()</a></code>. This means that then the <code>x</code> argument can be left blank, see <em>Examples</em>.</p>
<p>These functions are context-aware. This means that then the <code>x</code> argument can be left blank, see <em>Examples</em>.</p>
<p>The <code>first_isolate()</code> function is a wrapper around the <code><a href='get_episode.html'>is_new_episode()</a></code> function, but more efficient for data sets containing microorganism codes or names.</p>
<p>All isolates with a microbial ID of <code>NA</code> will be excluded as first isolate.</p><h3 class='hasAnchor' id='arguments'><a class='anchor' href='#arguments'></a>Why this is so Important</h3>
@ -419,7 +419,7 @@ The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>stable</s
<div class='dont-index'><p><code><a href='key_antibiotics.html'>key_antibiotics()</a></code></p></div>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><span class='co'># `example_isolates` is a dataset available in the AMR package.</span>
<pre class="examples"><span class='co'># `example_isolates` is a data set available in the AMR package.</span>
<span class='co'># See ?example_isolates.</span>
<span class='co'># basic filtering on first isolates</span>

View File

@ -82,7 +82,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9008</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>
@ -255,11 +255,11 @@
</tr>
<tr>
<th>episode_days</th>
<td><p>length of the required episode in days, see <em>Details</em></p></td>
<td><p>length of the required episode length in days, can also be less than a day, see <em>Details</em></p></td>
</tr>
<tr>
<th>...</th>
<td><p>arguments passed on to <code><a href='https://rdrr.io/r/base/as.Date.html'>as.Date()</a></code></p></td>
<td><p>arguments passed on to <code><a href='https://rdrr.io/r/base/as.POSIXlt.html'>as.POSIXct()</a></code></p></td>
</tr>
</table>
@ -293,15 +293,20 @@ The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>stable</s
<div class='dont-index'><p><code><a href='first_isolate.html'>first_isolate()</a></code></p></div>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><span class='co'># `example_isolates` is a dataset available in the AMR package.</span>
<pre class="examples"><span class='co'># `example_isolates` is a data set available in the AMR package.</span>
<span class='co'># See ?example_isolates.</span>
<span class='fu'>get_episode</span><span class='op'>(</span><span class='va'>example_isolates</span><span class='op'>$</span><span class='va'>date</span>, episode_days <span class='op'>=</span> <span class='fl'>60</span><span class='op'>)</span>
<span class='fu'>is_new_episode</span><span class='op'>(</span><span class='va'>example_isolates</span><span class='op'>$</span><span class='va'>date</span>, episode_days <span class='op'>=</span> <span class='fl'>60</span><span class='op'>)</span>
<span class='fu'>get_episode</span><span class='op'>(</span><span class='va'>example_isolates</span><span class='op'>$</span><span class='va'>date</span>, episode_days <span class='op'>=</span> <span class='fl'>60</span><span class='op'>)</span> <span class='co'># indices</span>
<span class='fu'>is_new_episode</span><span class='op'>(</span><span class='va'>example_isolates</span><span class='op'>$</span><span class='va'>date</span>, episode_days <span class='op'>=</span> <span class='fl'>60</span><span class='op'>)</span> <span class='co'># TRUE/FALSE</span>
<span class='co'># filter on results from the third 60-day episode only, using base R</span>
<span class='va'>example_isolates</span><span class='op'>[</span><span class='fu'><a href='https://rdrr.io/r/base/which.html'>which</a></span><span class='op'>(</span><span class='fu'>get_episode</span><span class='op'>(</span><span class='va'>example_isolates</span><span class='op'>$</span><span class='va'>date</span>, <span class='fl'>60</span><span class='op'>)</span> <span class='op'>==</span> <span class='fl'>3</span><span class='op'>)</span>, <span class='op'>]</span>
<span class='co'># the functions also work for less than a day, e.g. to include one per hour:</span>
<span class='fu'>get_episode</span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/Sys.time.html'>Sys.time</a></span><span class='op'>(</span><span class='op'>)</span>,
<span class='fu'><a href='https://rdrr.io/r/base/Sys.time.html'>Sys.time</a></span><span class='op'>(</span><span class='op'>)</span> <span class='op'>+</span> <span class='fl'>60</span> <span class='op'>*</span> <span class='fl'>60</span><span class='op'>)</span>,
episode_days <span class='op'>=</span> <span class='fl'>1</span><span class='op'>/</span><span class='fl'>24</span><span class='op'>)</span>
<span class='co'># \donttest{</span>
<span class='kw'>if</span> <span class='op'>(</span><span class='kw'><a href='https://rdrr.io/r/base/library.html'>require</a></span><span class='op'>(</span><span class='st'><a href='https://dplyr.tidyverse.org'>"dplyr"</a></span><span class='op'>)</span><span class='op'>)</span> <span class='op'>{</span>
<span class='co'># is_new_episode() can also be used in dplyr verbs to determine patient</span>

View File

@ -82,7 +82,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9008</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>
@ -392,7 +392,7 @@
The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>maturing</strong>. The unlying code of a maturing function has been roughed out, but finer details might still change. Since this function needs wider usage and more extensive testing, you are very welcome <a href='https://github.com/msberends/AMR/issues'>to suggest changes at our repository</a> or <a href='AMR.html'>write us an email (see section 'Contact Us')</a>.</p>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><span class='co'># `example_isolates` is a dataset available in the AMR package.</span>
<pre class="examples"><span class='co'># `example_isolates` is a data set available in the AMR package.</span>
<span class='co'># See ?example_isolates.</span>
<span class='co'># See ?pca for more info about Principal Component Analysis (PCA).</span>

View File

@ -81,7 +81,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9009</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>

View File

@ -82,7 +82,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9009</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>

View File

@ -82,7 +82,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9008</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>
@ -281,7 +281,7 @@
<colgroup><col class="name" /><col class="desc" /></colgroup>
<tr>
<th>x</th>
<td><p>a <a href='https://rdrr.io/r/base/data.frame.html'>data.frame</a> with antibiotics columns, like <code>AMX</code> or <code>amox</code>. Can be left blank when used inside <code>dplyr</code> verbs, such as <code><a href='https://dplyr.tidyverse.org/reference/filter.html'>filter()</a></code>, <code><a href='https://dplyr.tidyverse.org/reference/mutate.html'>mutate()</a></code> and <code><a href='https://dplyr.tidyverse.org/reference/summarise.html'>summarise()</a></code>.</p></td>
<td><p>a <a href='https://rdrr.io/r/base/data.frame.html'>data.frame</a> with antibiotics columns, like <code>AMX</code> or <code>amox</code>. Can be left blank to determine automatically</p></td>
</tr>
<tr>
<th>col_mo</th>
@ -331,7 +331,7 @@
<h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2>
<p>The <code>key_antibiotics()</code> function is context-aware when used inside <code>dplyr</code> verbs, such as <code><a href='https://dplyr.tidyverse.org/reference/filter.html'>filter()</a></code>, <code><a href='https://dplyr.tidyverse.org/reference/mutate.html'>mutate()</a></code> and <code><a href='https://dplyr.tidyverse.org/reference/summarise.html'>summarise()</a></code>. This means that then the <code>x</code> argument can be left blank, see <em>Examples</em>.</p>
<p>The <code>key_antibiotics()</code> function is context-aware. This means that then the <code>x</code> argument can be left blank, see <em>Examples</em>.</p>
<p>The function <code>key_antibiotics()</code> returns a character vector with 12 antibiotic results for every isolate. These isolates can then be compared using <code>key_antibiotics_equal()</code>, to check if two isolates have generally the same antibiogram. Missing and invalid values are replaced with a dot (<code>"."</code>) by <code>key_antibiotics()</code> and ignored by <code>key_antibiotics_equal()</code>.</p>
<p>The <code><a href='first_isolate.html'>first_isolate()</a></code> function only uses this function on the same microbial species from the same patient. Using this, e.g. an MRSA will be included after a susceptible <em>S. aureus</em> (MSSA) is found within the same patient episode. Without key antibiotic comparison it would not. See <code><a href='first_isolate.html'>first_isolate()</a></code> for more info.</p>
<p>At default, the antibiotics that are used for <strong>Gram-positive bacteria</strong> are:</p><ul>
@ -393,7 +393,7 @@ The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>stable</s
<div class='dont-index'><p><code><a href='first_isolate.html'>first_isolate()</a></code></p></div>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><span class='co'># `example_isolates` is a dataset available in the AMR package.</span>
<pre class="examples"><span class='co'># `example_isolates` is a data set available in the AMR package.</span>
<span class='co'># See ?example_isolates.</span>
<span class='co'># output of the `key_antibiotics()` function could be like this:</span>

View File

@ -82,7 +82,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9008</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>
@ -325,7 +325,7 @@ Ordered <a href='https://rdrr.io/r/base/factor.html'>factor</a> with levels <cod
<h2 class="hasAnchor" id="details"><a class="anchor" href="#details"></a>Details</h2>
<p>These functions are context-aware when used inside <code>dplyr</code> verbs, such as <code><a href='https://dplyr.tidyverse.org/reference/filter.html'>filter()</a></code>, <code><a href='https://dplyr.tidyverse.org/reference/mutate.html'>mutate()</a></code> and <code><a href='https://dplyr.tidyverse.org/reference/summarise.html'>summarise()</a></code>. This means that then the <code>x</code> argument can be left blank, see <em>Examples</em>.</p>
<p>These functions are context-aware. This means that then the <code>x</code> argument can be left blank, see <em>Examples</em>.</p>
<p>For the <code>pct_required_classes</code> argument, values above 1 will be divided by 100. This is to support both fractions (<code>0.75</code> or <code>3/4</code>) and percentages (<code>75</code>).</p>
<p><strong>Note:</strong> Every test that involves the Enterobacteriaceae family, will internally be performed using its newly named <em>order</em> Enterobacterales, since the Enterobacteriaceae family has been taxonomically reclassified by Adeolu <em>et al.</em> in 2016. Before that, Enterobacteriaceae was the only family under the Enterobacteriales (with an i) order. All species under the old Enterobacteriaceae family are still under the new Enterobacterales (without an i) order, but divided into multiple families. The way tests are performed now by this <code>mdro()</code> function makes sure that results from before 2016 and after 2016 are identical.</p>
<h2 class="hasAnchor" id="supported-international-national-guidelines"><a class="anchor" href="#supported-international-national-guidelines"></a>Supported International / National Guidelines</h2>
@ -375,7 +375,7 @@ Ordered <a href='https://rdrr.io/r/base/factor.html'>factor</a> with levels <cod
<span class='co'>#&gt; 43 891 1066 </span>
</pre>
<p>The rules set (the <code>custom</code> object in this case) could be exported to a shared file location using <code><a href='https://rdrr.io/r/base/readRDS.html'>saveRDS()</a></code> if you collaborate with multiple users. The custom rules set could then be imported using <code><a href='https://rdrr.io/r/base/readRDS.html'>readRDS()</a></code>,</p>
<p>The rules set (the <code>custom</code> object in this case) could be exported to a shared file location using <code><a href='https://rdrr.io/r/base/readRDS.html'>saveRDS()</a></code> if you collaborate with multiple users. The custom rules set could then be imported using <code><a href='https://rdrr.io/r/base/readRDS.html'>readRDS()</a></code>.</p>
<h2 class="hasAnchor" id="stable-lifecycle"><a class="anchor" href="#stable-lifecycle"></a>Stable Lifecycle</h2>

View File

@ -82,7 +82,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9008</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>
@ -324,7 +324,7 @@ The <a href='lifecycle.html'>lifecycle</a> of this function is <strong>maturing<
<p>On our website <a href='https://msberends.github.io/AMR/'>https://msberends.github.io/AMR/</a> you can find <a href='https://msberends.github.io/AMR/articles/AMR.html'>a comprehensive tutorial</a> about how to conduct AMR analysis, the <a href='https://msberends.github.io/AMR/reference/'>complete documentation of all functions</a> and <a href='https://msberends.github.io/AMR/articles/WHONET.html'>an example analysis using WHONET data</a>. As we would like to better understand the backgrounds and needs of our users, please <a href='https://msberends.github.io/AMR/survey.html'>participate in our survey</a>!</p>
<h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
<pre class="examples"><span class='co'># `example_isolates` is a dataset available in the AMR package.</span>
<pre class="examples"><span class='co'># `example_isolates` is a data set available in the AMR package.</span>
<span class='co'># See ?example_isolates.</span>
<span class='co'># \donttest{</span>

View File

@ -81,7 +81,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9009</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.5.0.9010</span>
</span>
</div>

View File

@ -76,7 +76,7 @@ On our website \url{https://msberends.github.io/AMR/} you can find \href{https:/
}
\examples{
# `example_isolates` is a dataset available in the AMR package.
# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates.
# this will select columns 'IPM' (imipenem) and 'MEM' (meropenem):

View File

@ -47,7 +47,7 @@ is.rsi.eligible(x, threshold = 0.05)
uti = NULL,
conserve_capped_values = FALSE,
add_intrinsic_resistance = FALSE,
reference_data = rsi_translation
reference_data = AMR::rsi_translation
)
}
\arguments{
@ -57,7 +57,7 @@ is.rsi.eligible(x, threshold = 0.05)
\item{threshold}{maximum fraction of invalid antimicrobial interpretations of \code{x}, see \emph{Examples}}
\item{mo}{any (vector of) text that can be coerced to a valid microorganism code with \code{\link[=as.mo]{as.mo()}}, will be determined automatically if the \code{dplyr} package is installed}
\item{mo}{any (vector of) text that can be coerced to a valid microorganism code with \code{\link[=as.mo]{as.mo()}}, can be left empty to determine it automatically}
\item{ab}{any (vector of) text that can be coerced to a valid antimicrobial code with \code{\link[=as.ab]{as.ab()}}}

View File

@ -93,7 +93,7 @@ A \code{\link{logical}} vector
Determine first (weighted) isolates of all microorganisms of every patient per episode and (if needed) per specimen type. To determine patient episodes not necessarily based on microorganisms, use \code{\link[=is_new_episode]{is_new_episode()}} that also supports grouping with the \code{dplyr} package.
}
\details{
These functions are context-aware when used inside \code{dplyr} verbs, such as \code{filter()}, \code{mutate()} and \code{summarise()}. This means that then the \code{x} argument can be left blank, see \emph{Examples}.
These functions are context-aware. This means that then the \code{x} argument can be left blank, see \emph{Examples}.
The \code{\link[=first_isolate]{first_isolate()}} function is a wrapper around the \code{\link[=is_new_episode]{is_new_episode()}} function, but more efficient for data sets containing microorganism codes or names.
@ -148,7 +148,7 @@ On our website \url{https://msberends.github.io/AMR/} you can find \href{https:/
}
\examples{
# `example_isolates` is a dataset available in the AMR package.
# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates.
# basic filtering on first isolates

View File

@ -12,9 +12,9 @@ is_new_episode(x, episode_days, ...)
\arguments{
\item{x}{vector of dates (class \code{Date} or \code{POSIXt})}
\item{episode_days}{length of the required episode in days, see \emph{Details}}
\item{episode_days}{length of the required episode length in days, can also be less than a day, see \emph{Details}}
\item{...}{arguments passed on to \code{\link[=as.Date]{as.Date()}}}
\item{...}{arguments passed on to \code{\link[=as.POSIXct]{as.POSIXct()}}}
}
\value{
\itemize{
@ -46,15 +46,20 @@ On our website \url{https://msberends.github.io/AMR/} you can find \href{https:/
}
\examples{
# `example_isolates` is a dataset available in the AMR package.
# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates.
get_episode(example_isolates$date, episode_days = 60)
is_new_episode(example_isolates$date, episode_days = 60)
get_episode(example_isolates$date, episode_days = 60) # indices
is_new_episode(example_isolates$date, episode_days = 60) # TRUE/FALSE
# filter on results from the third 60-day episode only, using base R
example_isolates[which(get_episode(example_isolates$date, 60) == 3), ]
# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(Sys.time(),
Sys.time() + 60 * 60),
episode_days = 1/24)
\donttest{
if (require("dplyr")) {
# is_new_episode() can also be used in dplyr verbs to determine patient

View File

@ -115,7 +115,7 @@ The \link[=lifecycle]{lifecycle} of this function is \strong{maturing}. The unly
}
\examples{
# `example_isolates` is a dataset available in the AMR package.
# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates.
# See ?pca for more info about Principal Component Analysis (PCA).

View File

@ -40,7 +40,7 @@ key_antibiotics_equal(
)
}
\arguments{
\item{x}{a \link{data.frame} with antibiotics columns, like \code{AMX} or \code{amox}. Can be left blank when used inside \code{dplyr} verbs, such as \code{filter()}, \code{mutate()} and \code{summarise()}.}
\item{x}{a \link{data.frame} with antibiotics columns, like \code{AMX} or \code{amox}. Can be left blank to determine automatically}
\item{col_mo}{column name of the IDs of the microorganisms (see \code{\link[=as.mo]{as.mo()}}), defaults to the first column of class \code{\link{mo}}. Values will be coerced using \code{\link[=as.mo]{as.mo()}}.}
@ -68,7 +68,7 @@ key_antibiotics_equal(
These function can be used to determine first isolates (see \code{\link[=first_isolate]{first_isolate()}}). Using key antibiotics to determine first isolates is more reliable than without key antibiotics. These selected isolates can then be called first 'weighted' isolates.
}
\details{
The \code{\link[=key_antibiotics]{key_antibiotics()}} function is context-aware when used inside \code{dplyr} verbs, such as \code{filter()}, \code{mutate()} and \code{summarise()}. This means that then the \code{x} argument can be left blank, see \emph{Examples}.
The \code{\link[=key_antibiotics]{key_antibiotics()}} function is context-aware. This means that then the \code{x} argument can be left blank, see \emph{Examples}.
The function \code{\link[=key_antibiotics]{key_antibiotics()}} returns a character vector with 12 antibiotic results for every isolate. These isolates can then be compared using \code{\link[=key_antibiotics_equal]{key_antibiotics_equal()}}, to check if two isolates have generally the same antibiogram. Missing and invalid values are replaced with a dot (\code{"."}) by \code{\link[=key_antibiotics]{key_antibiotics()}} and ignored by \code{\link[=key_antibiotics_equal]{key_antibiotics_equal()}}.
@ -135,7 +135,7 @@ On our website \url{https://msberends.github.io/AMR/} you can find \href{https:/
}
\examples{
# `example_isolates` is a dataset available in the AMR package.
# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates.
# output of the `key_antibiotics()` function could be like this:

View File

@ -77,7 +77,7 @@ Ordered \link{factor} with levels \code{Negative} < \verb{Positive, unconfirmed}
Determine which isolates are multidrug-resistant organisms (MDRO) according to international, national and custom guidelines.
}
\details{
These functions are context-aware when used inside \code{dplyr} verbs, such as \code{filter()}, \code{mutate()} and \code{summarise()}. This means that then the \code{x} argument can be left blank, see \emph{Examples}.
These functions are context-aware. This means that then the \code{x} argument can be left blank, see \emph{Examples}.
For the \code{pct_required_classes} argument, values above 1 will be divided by 100. This is to support both fractions (\code{0.75} or \code{3/4}) and percentages (\code{75}).
@ -137,7 +137,7 @@ table(x)
#> 43 891 1066
}
The rules set (the \code{custom} object in this case) could be exported to a shared file location using \code{\link[=saveRDS]{saveRDS()}} if you collaborate with multiple users. The custom rules set could then be imported using \code{\link[=readRDS]{readRDS()}},
The rules set (the \code{custom} object in this case) could be exported to a shared file location using \code{\link[=saveRDS]{saveRDS()}} if you collaborate with multiple users. The custom rules set could then be imported using \code{\link[=readRDS]{readRDS()}}.
}
\section{Stable Lifecycle}{

View File

@ -71,7 +71,7 @@ On our website \url{https://msberends.github.io/AMR/} you can find \href{https:/
}
\examples{
# `example_isolates` is a dataset available in the AMR package.
# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates.
\donttest{

View File

@ -21,13 +21,13 @@ library(AMR)
With the function `mdro()`, you can determine which micro-organisms are multi-drug resistant organisms (MDRO).
#### Type of input
### Type of input
The `mdro()` function takes a data set as input, such as a regular `data.frame`. It tries to automatically determine the right columns for info about your isolates, like the name of the species and all columns with results of antimicrobial agents. See the help page for more info about how to set the right settings for your data with the command `?mdro`.
The `mdro()` function takes a data set as input, such as a regular `data.frame`. It tries to automatically determine the right columns for info about your isolates, like the name of the species and all columns with results of antimicrobial agents. See the help page for more info about how to set the right settings for your data with the command `?mdro`.
For WHONET data (and most other data), all settings are automatically set correctly.
#### Guidelines
### Guidelines
The function support multiple guidelines. You can select a guideline with the `guideline` parameter. Currently supported guidelines are (case-insensitive):
@ -56,8 +56,36 @@ The function support multiple guidelines. You can select a guideline with the `g
The Dutch national guideline - Rijksinstituut voor Volksgezondheid en Milieu "WIP-richtlijn BRMO (Bijzonder Resistente Micro-Organismen) (ZKH)" ([link](https://www.rivm.nl/wip-richtlijn-brmo-bijzonder-resistente-micro-organismen-zkh))
Please suggest your own (country-specific) guidelines by letting us know: <https://github.com/msberends/AMR/issues/new>.
#### Custom Guidelines
You can also use your own custom guideline. Custom guidelines can be set with the `custom_mdro_guideline()` function. This is of great importance if you have custom rules to determine MDROs in your hospital, e.g., rules that are dependent on ward, state of contact isolation or other variables in your data.
If you are familiar with `case_when()` of the `dplyr` package, you will recognise the input method to set your own rules. Rules must be set using what \R considers to be the 'formula notation':
```{r}
custom <- custom_mdro_guideline(CIP == "R" & age > 60 ~ "Elderly Type A",
ERY == "R" & age > 60 ~ "Elderly Type B")
```
If a row/an isolate matches the first rule, the value after the first `~` (in this case *'Elderly Type A'*) will be set as MDRO value. Otherwise, the second rule will be tried and so on. The number of rules is unlimited.
You can print the rules set in the console for an overview. Colours will help reading it if your console supports colours.
```{r}
custom
```
The outcome of the function can be used for the `guideline` argument in the [mdro()] function:
```{r}
x <- mdro(example_isolates, guideline = custom)
table(x)
```
The rules set (the `custom` object in this case) could be exported to a shared file location using `saveRDS()` if you collaborate with multiple users. The custom rules set could then be imported using `readRDS()`.
#### Examples
### Examples
The `mdro()` function always returns an ordered `factor`. For example, the output of the default guideline by Magiorakos *et al.* returns a `factor` with levels 'Negative', 'MDR', 'XDR' or 'PDR' in that order.