1
0
mirror of https://github.com/msberends/AMR.git synced 2024-12-26 20:46:12 +01:00

breakpoints UTI interpretation fix

This commit is contained in:
dr. M.S. (Matthijs) Berends 2023-07-10 13:41:52 +02:00
parent 3829311dd3
commit 70c601ca11
28 changed files with 605 additions and 150 deletions

View File

@ -1,6 +1,6 @@
Package: AMR Package: AMR
Version: 2.0.0.9028 Version: 2.0.0.9029
Date: 2023-07-08 Date: 2023-07-10
Title: Antimicrobial Resistance Data Analysis Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR) Description: Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by data analysis and to work with microbial and antimicrobial properties by

View File

@ -1,4 +1,4 @@
# AMR 2.0.0.9028 # AMR 2.0.0.9029
## New ## New
* Clinical breakpoints and intrinsic resistance of EUCAST 2023 and CLSI 2023 have been added for `as.sir()`. EUCAST 2023 (v13.0) is now the new default guideline for all MIC and disks diffusion interpretations * Clinical breakpoints and intrinsic resistance of EUCAST 2023 and CLSI 2023 have been added for `as.sir()`. EUCAST 2023 (v13.0) is now the new default guideline for all MIC and disks diffusion interpretations

View File

@ -1241,20 +1241,20 @@ font_red_bg <- function(..., collapse = " ") {
} }
font_orange_bg <- function(..., collapse = " ") { font_orange_bg <- function(..., collapse = " ") {
# this is #f6d55c (picked to be colourblind-safe with other SIR colours) # this is #f6d55c (picked to be colourblind-safe with other SIR colours)
try_colour(font_black(..., collapse = collapse), before = "\033[48;5;222m", after = "\033[49m", collapse = collapse) try_colour(font_black(..., collapse = collapse, adapt = FALSE), before = "\033[48;5;222m", after = "\033[49m", collapse = collapse)
} }
font_yellow_bg <- function(..., collapse = " ") { font_yellow_bg <- function(..., collapse = " ") {
try_colour(font_black(..., collapse = collapse), before = "\033[48;5;228m", after = "\033[49m", collapse = collapse) try_colour(font_black(..., collapse = collapse, adapt = FALSE), before = "\033[48;5;228m", after = "\033[49m", collapse = collapse)
} }
font_green_bg <- function(..., collapse = " ") { font_green_bg <- function(..., collapse = " ") {
# this is #3caea3 (picked to be colourblind-safe with other SIR colours) # this is #3caea3 (picked to be colourblind-safe with other SIR colours)
try_colour(font_black(..., collapse = collapse), before = "\033[48;5;79m", after = "\033[49m", collapse = collapse) try_colour(font_black(..., collapse = collapse, adapt = FALSE), before = "\033[48;5;79m", after = "\033[49m", collapse = collapse)
} }
font_purple_bg <- function(..., collapse = " ") { font_purple_bg <- function(..., collapse = " ") {
try_colour(font_black(..., collapse = collapse), before = "\033[48;5;89m", after = "\033[49m", collapse = collapse) try_colour(font_black(..., collapse = collapse, adapt = FALSE), before = "\033[48;5;89m", after = "\033[49m", collapse = collapse)
} }
font_rose_bg <- function(..., collapse = " ") { font_rose_bg <- function(..., collapse = " ") {
try_colour(font_black(..., collapse = collapse), before = "\033[48;5;217m", after = "\033[49m", collapse = collapse) try_colour(font_black(..., collapse = collapse, adapt = FALSE), before = "\033[48;5;217m", after = "\033[49m", collapse = collapse)
} }
font_na <- function(..., collapse = " ") { font_na <- function(..., collapse = " ") {
font_red(..., collapse = collapse) font_red(..., collapse = collapse)

View File

@ -176,7 +176,7 @@
#' Data Set with `r format(nrow(microorganisms.groups), big.mark = " ")` Microorganisms In Species Groups #' Data Set with `r format(nrow(microorganisms.groups), big.mark = " ")` Microorganisms In Species Groups
#' #'
#' A data set containing species groups and microbiological complexes, which are used in [the clinical breakpoints table][clinial_breakpoints]. #' A data set containing species groups and microbiological complexes, which are used in [the clinical breakpoints table][clinical_breakpoints].
#' @format A [tibble][tibble::tibble] with `r format(nrow(microorganisms.groups), big.mark = " ")` observations and `r ncol(microorganisms.groups)` variables: #' @format A [tibble][tibble::tibble] with `r format(nrow(microorganisms.groups), big.mark = " ")` observations and `r ncol(microorganisms.groups)` variables:
#' - `mo_group`\cr ID of the species group / microbiological complex #' - `mo_group`\cr ID of the species group / microbiological complex
#' - `mo`\cr ID of the microorganism belonging in the species group / microbiological complex #' - `mo`\cr ID of the microorganism belonging in the species group / microbiological complex

33
R/mo.R
View File

@ -135,6 +135,10 @@
#' "Ureaplazma urealitycium" #' "Ureaplazma urealitycium"
#' )) #' ))
#' #'
#' # input will get cleaned up with the input given in the `cleaning_regex` argument,
#' # which defaults to `mo_cleaning_regex()`:
#' cat(mo_cleaning_regex(), "\n")
#'
#' as.mo("Streptococcus group A") #' as.mo("Streptococcus group A")
#' #'
#' as.mo("S. epidermidis") # will remain species: B_STPHY_EPDR #' as.mo("S. epidermidis") # will remain species: B_STPHY_EPDR
@ -561,14 +565,17 @@ mo_reset_session <- function() {
#' @rdname as.mo #' @rdname as.mo
#' @export #' @export
mo_cleaning_regex <- function() { mo_cleaning_regex <- function() {
parts_to_remove <- c("e?spp([^a-z]+|$)", "e?ssp([^a-z]+|$)", "e?ss([^a-z]+|$)", "e?sp([^a-z]+|$)", "e?subsp", "sube?species", "e?species",
"biovar[a-z]*", "biotype", "serovar[a-z]*", "var([^a-z]+|$)", "serogr.?up[a-z]*",
"titer", "dummy", "Ig[ADEGM]")
paste0( paste0(
"(", "(",
"[^A-Za-z- \\(\\)\\[\\]{}]+", "[^A-Za-z- \\(\\)\\[\\]{}]+",
"|", "|",
"([({]|\\[).+([})]|\\])", "([({]|\\[).+([})]|\\])",
"|", "|(^| )(",
"(^| )(e?spp|e?ssp|e?ss|e?sp|e?subsp|sube?species|biovar|biotype|serovar|var|serogr.?up|e?species|titer|dummy)[.]*|( Ig[ADEGM])( |$))" paste0(parts_to_remove[order(1 - nchar(parts_to_remove))], collapse = "|"),
) "))")
} }
# UNDOCUMENTED METHODS ---------------------------------------------------- # UNDOCUMENTED METHODS ----------------------------------------------------
@ -832,10 +839,10 @@ print.mo_uncertainties <- function(x, n = 10, ...) {
add_MO_lookup_to_AMR_env() add_MO_lookup_to_AMR_env()
col_red <- function(x) font_rose_bg(font_black(x, collapse = NULL, adapt = FALSE), collapse = NULL) col_red <- function(x) font_rose_bg(x, collapse = NULL)
col_orange <- function(x) font_orange_bg(font_black(x, collapse = NULL, adapt = FALSE), collapse = NULL) col_orange <- function(x) font_orange_bg(x, collapse = NULL)
col_yellow <- function(x) font_yellow_bg(font_black(x, collapse = NULL, adapt = FALSE), collapse = NULL) col_yellow <- function(x) font_yellow_bg(x, collapse = NULL)
col_green <- function(x) font_green_bg(font_black(x, collapse = NULL, adapt = FALSE), collapse = NULL) col_green <- function(x) font_green_bg(x, collapse = NULL)
if (has_colour()) { if (has_colour()) {
cat(word_wrap("Colour keys: ", cat(word_wrap("Colour keys: ",
@ -978,9 +985,9 @@ convert_colloquial_input <- function(x) {
perl = TRUE perl = TRUE
) )
# Streptococci in different languages, like "estreptococos grupo B" # Streptococci in different languages, like "estreptococos grupo B"
out[x %like_case% "strepto[ck]o[ck][a-zA-Z]* [abcdefghijkl]$"] <- gsub(".*e?strepto[ck]o[ck].* ([abcdefghijkl])$", out[x %like_case% "strepto[ck]o[ck][a-zA-Z ]* [abcdefghijkl]$"] <- gsub(".*e?strepto[ck]o[ck].* ([abcdefghijkl])$",
"B_STRPT_GRP\\U\\1", "B_STRPT_GRP\\U\\1",
x[x %like_case% "strepto[ck]o[ck][a-zA-Z]* [abcdefghijkl]$"], x[x %like_case% "strepto[ck]o[ck][a-zA-Z ]* [abcdefghijkl]$"],
perl = TRUE perl = TRUE
) )
out[x %like_case% "strep[a-z]* group [abcdefghijkl]$"] <- gsub(".* ([abcdefghijkl])$", out[x %like_case% "strep[a-z]* group [abcdefghijkl]$"] <- gsub(".* ([abcdefghijkl])$",
@ -994,6 +1001,7 @@ convert_colloquial_input <- function(x) {
perl = TRUE perl = TRUE
) )
out[x %like_case% "ha?emoly.*strep"] <- "B_STRPT_HAEM" out[x %like_case% "ha?emoly.*strep"] <- "B_STRPT_HAEM"
out[x %like_case% "(strepto.* [abcg, ]{2,4}$)"] <- "B_STRPT_ABCG"
out[x %like_case% "(strepto.* mil+er+i|^mgs[^a-z]*$)"] <- "B_STRPT_MILL" out[x %like_case% "(strepto.* mil+er+i|^mgs[^a-z]*$)"] <- "B_STRPT_MILL"
out[x %like_case% "mil+er+i gr"] <- "B_STRPT_MILL" out[x %like_case% "mil+er+i gr"] <- "B_STRPT_MILL"
out[x %like_case% "((strepto|^s).* viridans|^vgs[^a-z]*$)"] <- "B_STRPT_VIRI" out[x %like_case% "((strepto|^s).* viridans|^vgs[^a-z]*$)"] <- "B_STRPT_VIRI"
@ -1024,6 +1032,9 @@ convert_colloquial_input <- function(x) {
out[x %like_case% "anaerob[a-z]+ .*gram[ -]?pos.*"] <- "B_ANAER-POS" out[x %like_case% "anaerob[a-z]+ .*gram[ -]?pos.*"] <- "B_ANAER-POS"
out[is.na(out) & x %like_case% "anaerob[a-z]+ (micro)?.*organism"] <- "B_ANAER" out[is.na(out) & x %like_case% "anaerob[a-z]+ (micro)?.*organism"] <- "B_ANAER"
# coryneform bacteria
out[x %like_case% "^coryneform"] <- "B_CORYNF"
# yeasts and fungi # yeasts and fungi
out[x %like_case% "^yeast?"] <- "F_YEAST" out[x %like_case% "^yeast?"] <- "F_YEAST"
out[x %like_case% "^fung(us|i)"] <- "F_FUNGUS" out[x %like_case% "^fung(us|i)"] <- "F_FUNGUS"
@ -1032,6 +1043,10 @@ convert_colloquial_input <- function(x) {
out[x %like_case% "meningo[ck]o[ck]"] <- "B_NESSR_MNNG" out[x %like_case% "meningo[ck]o[ck]"] <- "B_NESSR_MNNG"
out[x %like_case% "gono[ck]o[ck]"] <- "B_NESSR_GNRR" out[x %like_case% "gono[ck]o[ck]"] <- "B_NESSR_GNRR"
out[x %like_case% "pneumo[ck]o[ck]"] <- "B_STRPT_PNMN" out[x %like_case% "pneumo[ck]o[ck]"] <- "B_STRPT_PNMN"
out[x %like_case% "hacek"] <- "B_HACEK"
out[x %like_case% "haemophilus" & x %like_case% "aggregatibacter" & x %like_case% "cardiobacterium" & x %like_case% "eikenella" & x %like_case% "kingella"] <- "B_HACEK"
out[x %like_case% "slow.* grow.* mycobact"] <- "B_MYCBC_SGM"
out[x %like_case% "rapid.* grow.* mycobact"] <- "B_MYCBC_RGM"
# unexisting names (con is the WHONET code for contamination) # unexisting names (con is the WHONET code for contamination)
out[x %in% c("con", "other", "none", "unknown") | x %like_case% "virus"] <- "UNKNOWN" out[x %in% c("con", "other", "none", "unknown") | x %like_case% "virus"] <- "UNKNOWN"

View File

@ -427,20 +427,11 @@ mo_pathogenicity <- function(x, language = get_AMR_locale(), keep_synonyms = get
kngd <- AMR_env$MO_lookup$kingdom[match(x.mo, AMR_env$MO_lookup$mo)] kngd <- AMR_env$MO_lookup$kingdom[match(x.mo, AMR_env$MO_lookup$mo)]
rank <- AMR_env$MO_lookup$rank[match(x.mo, AMR_env$MO_lookup$mo)] rank <- AMR_env$MO_lookup$rank[match(x.mo, AMR_env$MO_lookup$mo)]
out <- factor( out <- factor(case_when_AMR(prev == 1 & kngd == "Bacteria" & rank != "genus" ~ "Pathogenic",
ifelse(prev == 1 & kngd == "Bacteria" & rank != "genus", (prev < 2 & kngd == "Fungi") ~ "Potentially pathogenic",
"Pathogenic", prev == 2 & kngd == "Bacteria" ~ "Non-pathogenic",
ifelse(prev < 2 & kngd == "Fungi", kngd == "Bacteria" ~ "Potentially pathogenic",
"Potentially pathogenic", TRUE ~ "Unknown"),
ifelse(prev == 2 & kngd == "Bacteria",
"Non-pathogenic",
ifelse(kngd == "Bacteria",
"Potentially pathogenic",
"Unknown"
)
)
)
),
levels = c("Pathogenic", "Potentially pathogenic", "Non-pathogenic", "Unknown"), levels = c("Pathogenic", "Potentially pathogenic", "Non-pathogenic", "Unknown"),
ordered = TRUE ordered = TRUE
) )

97
R/sir.R
View File

@ -105,7 +105,7 @@
#' #'
#' The function [is_sir_eligible()] returns `TRUE` when a columns contains at most 5% invalid antimicrobial interpretations (not S and/or I and/or R), and `FALSE` otherwise. The threshold of 5% can be set with the `threshold` argument. If the input is a [data.frame], it iterates over all columns and returns a [logical] vector. #' The function [is_sir_eligible()] returns `TRUE` when a columns contains at most 5% invalid antimicrobial interpretations (not S and/or I and/or R), and `FALSE` otherwise. The threshold of 5% can be set with the `threshold` argument. If the input is a [data.frame], it iterates over all columns and returns a [logical] vector.
#' @section Interpretation of SIR: #' @section Interpretation of SIR:
#' In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (<https://www.eucast.org/newsiandr/>): #' In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (<https://www.eucast.org/newsiandr>):
#' #'
#' - **S - Susceptible, standard dosing regimen**\cr #' - **S - Susceptible, standard dosing regimen**\cr
#' A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent. #' A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.
@ -850,7 +850,7 @@ as_sir_method <- function(method_short,
messages[i] <- word_wrap(extra_indent = 5, messages[i]) messages[i] <- word_wrap(extra_indent = 5, messages[i])
} }
message( message(
font_yellow(font_bold(paste0(" Note", ifelse(length(messages) > 1, "s", ""), ":\n"))), font_yellow_bg(paste0(" NOTE", ifelse(length(messages) > 1, "S", ""), " \n")),
paste0(" ", font_black(AMR_env$bullet_icon), " ", font_black(messages, collapse = NULL), collapse = "\n") paste0(" ", font_black(AMR_env$bullet_icon), " ", font_black(messages, collapse = NULL), collapse = "\n")
) )
} }
@ -873,6 +873,7 @@ as_sir_method <- function(method_short,
# when as.sir.disk is called directly # when as.sir.disk is called directly
df$values <- as.disk(df$values) df$values <- as.disk(df$values)
} }
df_unique <- unique(df[ , c("mo", "uti"), drop = FALSE])
rise_warning <- FALSE rise_warning <- FALSE
rise_note <- FALSE rise_note <- FALSE
@ -906,15 +907,6 @@ as_sir_method <- function(method_short,
breakpoints <- breakpoints %pm>% breakpoints <- breakpoints %pm>%
subset(mo != "UNKNOWN" & ref_tbl %unlike% "PK.*PD") subset(mo != "UNKNOWN" & ref_tbl %unlike% "PK.*PD")
} }
if (all(uti == FALSE, na.rm = TRUE)) {
# remove UTI breakpoints
breakpoints <- breakpoints %pm>%
subset(is.na(uti) | uti == FALSE)
} else if (all(uti == TRUE, na.rm = TRUE)) {
# remove UTI breakpoints
breakpoints <- breakpoints %pm>%
subset(uti == TRUE)
}
msgs <- character(0) msgs <- character(0)
if (nrow(breakpoints) == 0) { if (nrow(breakpoints) == 0) {
@ -933,32 +925,39 @@ as_sir_method <- function(method_short,
add_intrinsic_resistance_to_AMR_env() add_intrinsic_resistance_to_AMR_env()
} }
p <- progress_ticker(n = length(unique(df$mo)), n_min = 10, title = font_blue(intro_txt), only_bar_percent = TRUE) p <- progress_ticker(n = nrow(df_unique), n_min = 10, title = font_blue(intro_txt), only_bar_percent = TRUE)
has_progress_bar <- !is.null(import_fn("progress_bar", "progress", error_on_fail = FALSE)) && nrow(df_unique) >= 10
on.exit(close(p)) on.exit(close(p))
# run the rules # run the rules
for (mo_currrent in unique(df$mo)) { for (i in seq_len(nrow(df_unique))) {
p$tick() p$tick()
rows <- which(df$mo == mo_currrent) mo_current <- df_unique[i, "mo", drop = TRUE]
uti_current <- df_unique[i, "uti", drop = TRUE]
if (is.na(uti_current)) {
# preference, so no filter on UTIs
rows <- which(df$mo == mo_current)
} else {
rows <- which(df$mo == mo_current & df$uti == uti_current)
}
values <- df[rows, "values", drop = TRUE] values <- df[rows, "values", drop = TRUE]
uti <- df[rows, "uti", drop = TRUE]
new_sir <- rep(NA_sir_, length(rows)) new_sir <- rep(NA_sir_, length(rows))
# find different mo properties # find different mo properties
mo_current_genus <- as.mo(mo_genus(mo_currrent, language = NULL)) mo_current_genus <- as.mo(mo_genus(mo_current, language = NULL))
mo_current_family <- as.mo(mo_family(mo_currrent, language = NULL)) mo_current_family <- as.mo(mo_family(mo_current, language = NULL))
mo_current_order <- as.mo(mo_order(mo_currrent, language = NULL)) mo_current_order <- as.mo(mo_order(mo_current, language = NULL))
mo_current_class <- as.mo(mo_class(mo_currrent, language = NULL)) mo_current_class <- as.mo(mo_class(mo_current, language = NULL))
if (mo_currrent %in% AMR::microorganisms.groups$mo) { if (mo_current %in% AMR::microorganisms.groups$mo) {
# get the species group # get the species group
mo_current_species_group <- AMR::microorganisms.groups$mo_group[match(mo_currrent, AMR::microorganisms.groups$mo)] mo_current_species_group <- AMR::microorganisms.groups$mo_group[match(mo_current, AMR::microorganisms.groups$mo)]
} else { } else {
mo_current_species_group <- mo_currrent mo_current_species_group <- mo_current
} }
mo_current_other <- as.mo("UNKNOWN") mo_current_other <- as.mo("UNKNOWN")
# formatted for notes # formatted for notes
mo_formatted <- suppressMessages(suppressWarnings(mo_fullname(mo_currrent, language = NULL, keep_synonyms = FALSE))) mo_formatted <- suppressMessages(suppressWarnings(mo_fullname(mo_current, language = NULL, keep_synonyms = FALSE)))
if (!mo_rank(mo_currrent) %in% c("kingdom", "phylum", "class", "order")) { if (!mo_rank(mo_current) %in% c("kingdom", "phylum", "class", "order")) {
mo_formatted <- font_italic(mo_formatted) mo_formatted <- font_italic(mo_formatted)
} }
ab_formatted <- paste0( ab_formatted <- paste0(
@ -976,40 +975,45 @@ as_sir_method <- function(method_short,
mo_current_other mo_current_other
)) ))
if (any(uti, na.rm = TRUE)) { if (is.na(unique(uti_current))) {
breakpoints_current <- breakpoints_current %pm>% breakpoints_current <- breakpoints_current %pm>%
# this will put UTI = FALSE first, then UTI = TRUE, then UTI = NA
pm_arrange(rank_index, uti) # 'uti' is a column in data set 'clinical_breakpoints'
} else if (unique(uti_current) == TRUE) {
breakpoints_current <- breakpoints_current %pm>%
subset(uti == TRUE) %pm>%
# be as specific as possible (i.e. prefer species over genus): # be as specific as possible (i.e. prefer species over genus):
# the below `pm_desc(uti)` will put `TRUE` on top and FALSE on bottom pm_arrange(rank_index)
pm_arrange(rank_index, pm_desc(uti)) # 'uti' is a column in data set 'clinical_breakpoints' } else if (unique(uti_current) == FALSE) {
} else {
breakpoints_current <- breakpoints_current %pm>% breakpoints_current <- breakpoints_current %pm>%
# sort UTI = FALSE first, then UTI = TRUE subset(uti == FALSE) %pm>%
pm_arrange(rank_index, uti) # be as specific as possible (i.e. prefer species over genus):
pm_arrange(rank_index)
} }
# throw notes for different body sites # throw notes for different body sites
if (nrow(breakpoints_current) == 1 && all(breakpoints_current$uti == TRUE) && any(uti %in% c(FALSE, NA)) && message_not_thrown_before("as.sir", "uti", ab_coerced)) {
# only UTI breakpoints available
warning_("in `as.sir()`: interpretation of ", font_bold(ab_formatted), " is only available for (uncomplicated) urinary tract infections (UTI) for some microorganisms, thus assuming `uti = TRUE`. See `?as.sir`.")
rise_warning <- TRUE
} else if (nrow(breakpoints_current) > 1 && length(unique(breakpoints_current$site)) > 1 && any(is.na(uti)) && all(c(TRUE, FALSE) %in% breakpoints_current$uti, na.rm = TRUE) && message_not_thrown_before("as.sir", "siteUTI", mo_currrent, ab_coerced)) {
# both UTI and Non-UTI breakpoints available
msgs <- c(msgs, paste0("Breakpoints for UTI ", font_underline("and"), " non-UTI available for ", ab_formatted, " in ", mo_formatted, " - assuming non-UTI. Use argument `uti` to set which isolates are from urine. See `?as.sir`."))
breakpoints_current <- breakpoints_current %pm>%
pm_filter(uti == FALSE)
} else if (nrow(breakpoints_current) > 1 && length(unique(breakpoints_current$site)) > 1 && all(breakpoints_current$uti == FALSE, na.rm = TRUE) && message_not_thrown_before("as.sir", "siteOther", mo_currrent, ab_coerced)) {
# breakpoints for multiple body sites available
site <- breakpoints_current[1L, "site", drop = FALSE] # this is the one we'll take site <- breakpoints_current[1L, "site", drop = FALSE] # this is the one we'll take
if (is.na(site)) { if (is.na(site)) {
site <- paste0("an unspecified body site") site <- paste0("an unspecified body site")
} else { } else {
site <- paste0("body site '", site, "'") site <- paste0("body site '", site, "'")
} }
if (nrow(breakpoints_current) == 1 && all(breakpoints_current$uti == TRUE) && any(uti_current %in% c(FALSE, NA)) && message_not_thrown_before("as.sir", "uti", ab_coerced)) {
# only UTI breakpoints available
warning_("in `as.sir()`: interpretation of ", font_bold(ab_formatted), " is only available for (uncomplicated) urinary tract infections (UTI) for some microorganisms, thus assuming `uti = TRUE`. See `?as.sir`.")
rise_warning <- TRUE
} else if (nrow(breakpoints_current) > 1 && length(unique(breakpoints_current$site)) > 1 && any(is.na(uti_current)) && all(c(TRUE, FALSE) %in% breakpoints_current$uti, na.rm = TRUE) && message_not_thrown_before("as.sir", "siteUTI", mo_current, ab_coerced)) {
# both UTI and Non-UTI breakpoints available
msgs <- c(msgs, paste0("Breakpoints for UTI ", font_underline("and"), " non-UTI available for ", ab_formatted, " in ", mo_formatted, " - assuming ", site, ". Use argument `uti` to set which isolates are from urine. See `?as.sir`."))
breakpoints_current <- breakpoints_current %pm>%
pm_filter(uti == FALSE)
} else if (nrow(breakpoints_current) > 1 && length(unique(breakpoints_current$site)) > 1 && all(breakpoints_current$uti == FALSE, na.rm = TRUE) && message_not_thrown_before("as.sir", "siteOther", mo_current, ab_coerced)) {
# breakpoints for multiple body sites available
msgs <- c(msgs, paste0("Multiple breakpoints available for ", ab_formatted, " in ", mo_formatted, " - assuming ", site, ".")) msgs <- c(msgs, paste0("Multiple breakpoints available for ", ab_formatted, " in ", mo_formatted, " - assuming ", site, "."))
} }
# first check if mo is intrinsic resistant # first check if mo is intrinsic resistant
if (isTRUE(add_intrinsic_resistance) && guideline_coerced %like% "EUCAST" && paste(mo_currrent, ab_coerced) %in% AMR_env$intrinsic_resistant) { if (isTRUE(add_intrinsic_resistance) && guideline_coerced %like% "EUCAST" && paste(mo_current, ab_coerced) %in% AMR_env$intrinsic_resistant) {
msgs <- c(msgs, paste0("Intrinsic resistance applied for ", ab_formatted, " in ", mo_formatted, "")) msgs <- c(msgs, paste0("Intrinsic resistance applied for ", ab_formatted, " in ", mo_formatted, ""))
new_sir <- rep(as.sir("R"), length(rows)) new_sir <- rep(as.sir("R"), length(rows))
} else if (nrow(breakpoints_current) == 0) { } else if (nrow(breakpoints_current) == 0) {
@ -1059,10 +1063,11 @@ as_sir_method <- function(method_short,
index = rows, index = rows,
ab_input = rep(ab.bak, length(rows)), ab_input = rep(ab.bak, length(rows)),
ab_guideline = rep(ab_coerced, length(rows)), ab_guideline = rep(ab_coerced, length(rows)),
mo_input = rep(mo.bak[match(mo_currrent, df$mo)][1], length(rows)), mo_input = rep(mo.bak[match(mo_current, df$mo)][1], length(rows)),
mo_guideline = rep(breakpoints_current[, "mo", drop = TRUE], length(rows)), mo_guideline = rep(breakpoints_current[, "mo", drop = TRUE], length(rows)),
guideline = rep(guideline_coerced, length(rows)), guideline = rep(guideline_coerced, length(rows)),
ref_table = rep(breakpoints_current[, "ref_tbl", drop = TRUE], length(rows)), ref_table = rep(breakpoints_current[, "ref_tbl", drop = TRUE], length(rows)),
uti = rep(breakpoints_current[, "uti", drop = TRUE], length(rows)),
method = rep(method_coerced, length(rows)), method = rep(method_coerced, length(rows)),
input = as.double(values), input = as.double(values),
outcome = as.sir(new_sir), outcome = as.sir(new_sir),
@ -1078,14 +1083,14 @@ as_sir_method <- function(method_short,
close(p) close(p)
# printing messages # printing messages
if (!is.null(import_fn("progress_bar", "progress", error_on_fail = FALSE))) { if (has_progress_bar == TRUE) {
# the progress bar has overwritten the intro text, so: # the progress bar has overwritten the intro text, so:
message_(intro_txt, appendLF = FALSE, as_note = FALSE) message_(intro_txt, appendLF = FALSE, as_note = FALSE)
} }
if (isTRUE(rise_warning)) { if (isTRUE(rise_warning)) {
message(font_yellow(font_bold(" * WARNING *"))) message(font_rose_bg(" * WARNING *"))
} else if (length(msgs) == 0) { } else if (length(msgs) == 0) {
message(font_green(" OK.")) message(font_green_bg(" OK "))
} else { } else {
msg_note(sort(msgs)) msg_note(sort(msgs))
} }

View File

@ -1 +1 @@
87c6c20d117acd06c37bab6d93966a0b 7aeceefb444830af010fcc16f5ba4705

Binary file not shown.

Binary file not shown.

Binary file not shown.

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -133,8 +133,11 @@ organisms <- organisms %>%
select(-group) %>% select(-group) %>%
distinct() distinct()
# 2023-07-08 SGM must be Slowly-growing Mycobacterium, not Strep Gamma, not sure why this went wrong # 2023-07-08 SGM is also Strep gamma in WHONET, must only be Slowly-growing Mycobacterium
organisms <- organisms %>%
filter(!(code == "SGM" & name %like% "Streptococcus"))
# this must be empty:
organisms$code[organisms$code %>% duplicated()]
saveRDS(organisms, "data-raw/organisms.rds", version = 2) saveRDS(organisms, "data-raw/organisms.rds", version = 2)
@ -223,7 +226,7 @@ breakpoints %>%
filter(!WHONET_ABX_CODE %in% whonet_antibiotics$WHONET_ABX_CODE) %>% filter(!WHONET_ABX_CODE %in% whonet_antibiotics$WHONET_ABX_CODE) %>%
pull(WHONET_ABX_CODE) %>% pull(WHONET_ABX_CODE) %>%
unique() unique()
# they are at the moment all old codes that have right replacements in `antibiotics`, so we can use as.ab() # they are at the moment all old codes that have the right replacements in `antibiotics`, so we can use as.ab()
## Build new breakpoints table ---- ## Build new breakpoints table ----
@ -260,7 +263,7 @@ breakpoints_new <- breakpoints %>%
gsub("", "-", ., fixed = TRUE)) %>% gsub("", "-", ., fixed = TRUE)) %>%
arrange(desc(guideline), mo, ab, type, method) %>% arrange(desc(guideline), mo, ab, type, method) %>%
filter(!(is.na(breakpoint_S) & is.na(breakpoint_R)) & !is.na(mo) & !is.na(ab)) %>% filter(!(is.na(breakpoint_S) & is.na(breakpoint_R)) & !is.na(mo) & !is.na(ab)) %>%
distinct(guideline, ab, mo, method, site, breakpoint_S, .keep_all = TRUE) distinct(guideline, type, ab, mo, method, site, breakpoint_S, .keep_all = TRUE)
# check the strange duplicates # check the strange duplicates
breakpoints_new %>% breakpoints_new %>%
@ -268,7 +271,7 @@ breakpoints_new %>%
filter(id %in% .$id[which(duplicated(id))]) filter(id %in% .$id[which(duplicated(id))])
# remove duplicates # remove duplicates
breakpoints_new <- breakpoints_new %>% breakpoints_new <- breakpoints_new %>%
distinct(guideline, ab, mo, method, site, .keep_all = TRUE) distinct(guideline, type, ab, mo, method, site, .keep_all = TRUE)
# fix reference table names # fix reference table names
breakpoints_new %>% filter(guideline %like% "EUCAST", is.na(ref_tbl)) %>% View() breakpoints_new %>% filter(guideline %like% "EUCAST", is.na(ref_tbl)) %>% View()
@ -289,10 +292,10 @@ breakpoints_new[which(breakpoints_new$method == "MIC" &
breakpoints_new[which(breakpoints_new$method == "MIC" & breakpoints_new[which(breakpoints_new$method == "MIC" &
is.na(breakpoints_new$breakpoint_R)), "breakpoint_R"] <- max(m) is.na(breakpoints_new$breakpoint_R)), "breakpoint_R"] <- max(m)
# raise these one higher valid MIC factor level: # raise these one higher valid MIC factor level:
breakpoints_new[which(breakpoints_new$breakpoint_R == 129), "breakpoint_R"] <- m[which(m == 128) + 1] breakpoints_new[which(breakpoints_new$breakpoint_R == 129), "breakpoint_R"] <- 128
breakpoints_new[which(breakpoints_new$breakpoint_R == 257), "breakpoint_R"] <- m[which(m == 256) + 1] breakpoints_new[which(breakpoints_new$breakpoint_R == 257), "breakpoint_R"] <- 256
breakpoints_new[which(breakpoints_new$breakpoint_R == 513), "breakpoint_R"] <- m[which(m == 512) + 1] breakpoints_new[which(breakpoints_new$breakpoint_R == 513), "breakpoint_R"] <- 513
breakpoints_new[which(breakpoints_new$breakpoint_R == 1025), "breakpoint_R"] <- m[which(m == 1024) + 1] breakpoints_new[which(breakpoints_new$breakpoint_R == 1025), "breakpoint_R"] <- 1024
# WHONET adds one log2 level to the R breakpoint for their software, e.g. in AMC in Enterobacterales: # WHONET adds one log2 level to the R breakpoint for their software, e.g. in AMC in Enterobacterales:
# EUCAST 2022 guideline: S <= 8 and R > 8 # EUCAST 2022 guideline: S <= 8 and R > 8
@ -319,6 +322,9 @@ breakpoints_new %>% filter(guideline == "EUCAST 2023", ab == "AMC", mo == "B_[OR
# compare with current version # compare with current version
clinical_breakpoints %>% filter(guideline == "EUCAST 2022", ab == "AMC", mo == "B_[ORD]_ENTRBCTR", method == "MIC") clinical_breakpoints %>% filter(guideline == "EUCAST 2022", ab == "AMC", mo == "B_[ORD]_ENTRBCTR", method == "MIC")
# must have "human" and "ECOFF"
breakpoints_new %>% filter(mo == "B_STRPT_PNMN", ab == "AMP", guideline == "EUCAST 2020", method == "MIC")
# check dimensions # check dimensions
dim(breakpoints_new) dim(breakpoints_new)
dim(clinical_breakpoints) dim(clinical_breakpoints)

Binary file not shown.

View File

@ -106,7 +106,7 @@ expect_identical(mo_oxygen_tolerance(c("Klebsiella pneumoniae", "Clostridioides
c("aerobe", "anaerobe")) c("aerobe", "anaerobe"))
expect_equal(as.character(table(mo_pathogenicity(example_isolates$mo))), expect_equal(as.character(table(mo_pathogenicity(example_isolates$mo))),
c("1561", "422", "1", "16")) c("1874", "109", "1", "16"))
expect_equal(mo_ref("Escherichia coli"), "Castellani et al., 1919") expect_equal(mo_ref("Escherichia coli"), "Castellani et al., 1919")
expect_equal(mo_authors("Escherichia coli"), "Castellani et al.") expect_equal(mo_authors("Escherichia coli"), "Castellani et al.")
@ -129,9 +129,12 @@ for (l in AMR:::LANGUAGES_SUPPORTED[-1]) {
# test languages # test languages
expect_error(mo_gramstain("Escherichia coli", language = "UNKNOWN")) expect_error(mo_gramstain("Escherichia coli", language = "UNKNOWN"))
dutch <- suppressWarnings(mo_name(microorganisms$fullname[which(microorganisms$fullname %unlike% "unknown|coagulase|Fungi|[(]class[)]|[{]")], language = "nl", keep_synonyms = TRUE)) # should be transformable to English again fullnames <- microorganisms$fullname[which(microorganisms$fullname %unlike% "unknown|coagulase|Fungi|[(]class[)]|[{]")]
expect_identical(suppressWarnings(mo_name(dutch, language = NULL, keep_synonyms = TRUE)), to_dutch <- suppressWarnings(mo_name(fullnames, language = "nl", keep_synonyms = TRUE))
microorganisms$fullname[which(microorganisms$fullname %unlike% "unknown|coagulase|Fungi|[(]class[)]|[{]")]) # gigantic test - will run ALL names back_to_english <- suppressWarnings(mo_name(dutch, language = NULL, keep_synonyms = TRUE))
diffs <- paste0('"', fullnames[fullnames != back_to_english], '"', collapse = ", ")
expect_identical(fullnames, back_to_english, info = diffs) # gigantic test - will run ALL names
# manual property function # manual property function
expect_error(mo_property("Escherichia coli", property = c("genus", "fullname"))) expect_error(mo_property("Escherichia coli", property = c("genus", "fullname")))

View File

@ -201,6 +201,10 @@ as.mo(c(
"Ureaplazma urealitycium" "Ureaplazma urealitycium"
)) ))
# input will get cleaned up with the input given in the `cleaning_regex` argument,
# which defaults to `mo_cleaning_regex()`:
cat(mo_cleaning_regex(), "\n")
as.mo("Streptococcus group A") as.mo("Streptococcus group A")
as.mo("S. epidermidis") # will remain species: B_STPHY_EPDR as.mo("S. epidermidis") # will remain species: B_STPHY_EPDR

View File

@ -171,7 +171,7 @@ After using \code{\link[=as.sir]{as.sir()}}, you can use the \code{\link[=eucast
\subsection{Machine-Readable Clinical Breakpoints}{ \subsection{Machine-Readable Clinical Breakpoints}{
The repository of this package \href{https://github.com/msberends/AMR/blob/main/data-raw/clinical_breakpoints.txt}{contains a machine-readable version} of all guidelines. This is a CSV file consisting of 28 454 rows and 12 columns. This file is machine-readable, since it contains one row for every unique combination of the test method (MIC or disk diffusion), the antimicrobial drug and the microorganism. \strong{This allows for easy implementation of these rules in laboratory information systems (LIS)}. Note that it only contains interpretation guidelines for humans - interpretation guidelines from CLSI for animals were removed. The repository of this package \href{https://github.com/msberends/AMR/blob/main/data-raw/clinical_breakpoints.txt}{contains a machine-readable version} of all guidelines. This is a CSV file consisting of 28 885 rows and 12 columns. This file is machine-readable, since it contains one row for every unique combination of the test method (MIC or disk diffusion), the antimicrobial drug and the microorganism. \strong{This allows for easy implementation of these rules in laboratory information systems (LIS)}. Note that it only contains interpretation guidelines for humans - interpretation guidelines from CLSI for animals were removed.
} }
\subsection{Other}{ \subsection{Other}{
@ -185,7 +185,7 @@ The function \code{\link[=is_sir_eligible]{is_sir_eligible()}} returns \code{TRU
} }
\section{Interpretation of SIR}{ \section{Interpretation of SIR}{
In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr/}): In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr}):
\itemize{ \itemize{
\item \strong{S - Susceptible, standard dosing regimen}\cr \item \strong{S - Susceptible, standard dosing regimen}\cr
A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent. A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.

View File

@ -5,7 +5,7 @@
\alias{clinical_breakpoints} \alias{clinical_breakpoints}
\title{Data Set with Clinical Breakpoints for SIR Interpretation} \title{Data Set with Clinical Breakpoints for SIR Interpretation}
\format{ \format{
A \link[tibble:tibble]{tibble} with 28 454 observations and 12 variables: A \link[tibble:tibble]{tibble} with 28 885 observations and 12 variables:
\itemize{ \itemize{
\item \code{guideline}\cr Name of the guideline \item \code{guideline}\cr Name of the guideline
\item \code{type}\cr Breakpoint type, either "ECOFF", "animal", or "human" \item \code{type}\cr Breakpoint type, either "ECOFF", "animal", or "human"

View File

@ -71,7 +71,7 @@ The function \code{\link[=count_df]{count_df()}} takes any variable from \code{d
} }
\section{Interpretation of SIR}{ \section{Interpretation of SIR}{
In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr/}): In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr}):
\itemize{ \itemize{
\item \strong{S - Susceptible, standard dosing regimen}\cr \item \strong{S - Susceptible, standard dosing regimen}\cr
A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent. A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.

View File

@ -174,7 +174,7 @@ Amikacin (\code{AMK}, \href{https://www.whocc.no/atc_ddd_index/?code=J01GB06&sho
\section{Interpretation of SIR}{ \section{Interpretation of SIR}{
In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr/}): In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr}):
\itemize{ \itemize{
\item \strong{S - Susceptible, standard dosing regimen}\cr \item \strong{S - Susceptible, standard dosing regimen}\cr
A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent. A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.

View File

@ -17,7 +17,7 @@ A \link[tibble:tibble]{tibble} with 444 observations and 4 variables:
microorganisms.groups microorganisms.groups
} }
\description{ \description{
A data set containing species groups and microbiological complexes, which are used in \link[=clinial_breakpoints]{the clinical breakpoints table}. A data set containing species groups and microbiological complexes, which are used in \link[=clinical_breakpoints]{the clinical breakpoints table}.
} }
\details{ \details{
Like all data sets in this package, this data set is publicly available for download in the following formats: R, MS Excel, Apache Feather, Apache Parquet, SPSS, SAS, and Stata. Please visit \href{https://msberends.github.io/AMR/articles/datasets.html}{our website for the download links}. The actual files are of course available on \href{https://github.com/msberends/AMR/tree/main/data-raw}{our GitHub repository}. Like all data sets in this package, this data set is publicly available for download in the following formats: R, MS Excel, Apache Feather, Apache Parquet, SPSS, SAS, and Stata. Please visit \href{https://msberends.github.io/AMR/articles/datasets.html}{our website for the download links}. The actual files are of course available on \href{https://github.com/msberends/AMR/tree/main/data-raw}{our GitHub repository}.

View File

@ -146,7 +146,7 @@ Using \code{only_all_tested} has no impact when only using one antibiotic as inp
\section{Interpretation of SIR}{ \section{Interpretation of SIR}{
In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr/}): In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr}):
\itemize{ \itemize{
\item \strong{S - Susceptible, standard dosing regimen}\cr \item \strong{S - Susceptible, standard dosing regimen}\cr
A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent. A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.

View File

@ -112,7 +112,7 @@ Valid options for the statistical model (argument \code{model}) are:
} }
\section{Interpretation of SIR}{ \section{Interpretation of SIR}{
In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr/}): In 2019, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) has decided to change the definitions of susceptibility testing categories S, I, and R as shown below (\url{https://www.eucast.org/newsiandr}):
\itemize{ \itemize{
\item \strong{S - Susceptible, standard dosing regimen}\cr \item \strong{S - Susceptible, standard dosing regimen}\cr
A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent. A microorganism is categorised as "Susceptible, standard dosing regimen", when there is a high likelihood of therapeutic success using a standard dosing regimen of the agent.