mirror of https://github.com/msberends/AMR.git
documentation for 'data.table' AB selectors
This commit is contained in:
parent
45e840c02f
commit
7ad8635994
|
@ -1,5 +1,5 @@
|
|||
Package: AMR
|
||||
Version: 1.8.2.9149
|
||||
Version: 1.8.2.9150
|
||||
Date: 2023-03-11
|
||||
Title: Antimicrobial Resistance Data Analysis
|
||||
Description: Functions to simplify and standardise antimicrobial resistance (AMR)
|
||||
|
|
2
NEWS.md
2
NEWS.md
|
@ -1,4 +1,4 @@
|
|||
# AMR 1.8.2.9149
|
||||
# AMR 1.8.2.9150
|
||||
|
||||
*(this beta version will eventually become v2.0! We're happy to reach a new major milestone soon!)*
|
||||
|
||||
|
|
|
@ -934,7 +934,7 @@ get_current_data <- function(arg_name, call) {
|
|||
}
|
||||
}
|
||||
|
||||
# now go over all underlying environments looking for other dplyr and base R selection environments
|
||||
# now go over all underlying environments looking for other dplyr, data.table and base R selection environments
|
||||
with_generic <- vapply(FUN.VALUE = logical(1), frms, function(e) !is.null(e$`.Generic`))
|
||||
for (env in frms[which(with_generic)]) {
|
||||
if (valid_df(env$`.data`)) {
|
||||
|
@ -945,6 +945,7 @@ get_current_data <- function(arg_name, call) {
|
|||
return(env$xx)
|
||||
} else if (valid_df(env$x)) {
|
||||
# an element `x` will be in the environment for only cols in base R, e.g. `example_isolates[, carbapenems()]`
|
||||
# this element will also be present in data.table environments where there's a .Generic available
|
||||
return(env$x)
|
||||
}
|
||||
}
|
||||
|
|
|
@ -29,14 +29,16 @@
|
|||
|
||||
#' Antibiotic Selectors
|
||||
#'
|
||||
#' These functions allow for filtering rows and selecting columns based on antibiotic test results that are of a specific antibiotic class or group, without the need to define the columns or antibiotic abbreviations. In short, if you have a column name that resembles an antimicrobial drug, it will be picked up by any of these functions that matches its pharmaceutical class: "cefazolin", "CZO" and "J01DB04" will all be picked up by [cephalosporins()].
|
||||
#' @description These functions allow for filtering rows and selecting columns based on antibiotic test results that are of a specific antibiotic class or group (according to the [antibiotics] data set), without the need to define the columns or antibiotic abbreviations.
|
||||
#'
|
||||
#' In short, if you have a column name that resembles an antimicrobial drug, it will be picked up by any of these functions that matches its pharmaceutical class: "cefazolin", "kefzol", "CZO" and "J01DB04" will all be picked up by [cephalosporins()].
|
||||
#' @param ab_class an antimicrobial class or a part of it, such as `"carba"` and `"carbapenems"`. The columns `group`, `atc_group1` and `atc_group2` of the [antibiotics] data set will be searched (case-insensitive) for this value.
|
||||
#' @param filter an [expression] to be evaluated in the [antibiotics] data set, such as `name %like% "trim"`
|
||||
#' @param only_sir_columns a [logical] to indicate whether only columns of class `sir` must be selected (default is `FALSE`), see [as.sir()]
|
||||
#' @param only_treatable a [logical] to indicate whether antimicrobial drugs should be excluded that are only for laboratory tests (default is `TRUE`), such as gentamicin-high (`GEH`) and imipenem/EDTA (`IPE`)
|
||||
#' @param ... ignored, only in place to allow future extensions
|
||||
#' @details
|
||||
#' These functions can be used in data set calls for selecting columns and filtering rows. They are heavily inspired by the [Tidyverse selection helpers][tidyselect::language] such as [`everything()`][tidyselect::everything()], but also work in base \R and not only in `dplyr` verbs. Nonetheless, they are very convenient to use with `dplyr` functions such as [`select()`][dplyr::select()], [`filter()`][dplyr::filter()] and [`summarise()`][dplyr::summarise()], see *Examples*.
|
||||
#' These functions can be used in data set calls for selecting columns and filtering rows. They work with base \R, the Tidyverse, and `data.table`. They are heavily inspired by the [Tidyverse selection helpers][tidyselect::language] such as [`everything()`][tidyselect::everything()], but are not limited to `dplyr` verbs. Nonetheless, they are very convenient to use with `dplyr` functions such as [`select()`][dplyr::select()], [`filter()`][dplyr::filter()] and [`summarise()`][dplyr::summarise()], see *Examples*.
|
||||
#'
|
||||
#' All columns in the data in which these functions are called will be searched for known antibiotic names, abbreviations, brand names, and codes (ATC, EARS-Net, WHO, etc.) according to the [antibiotics] data set. This means that a selector such as [aminoglycosides()] will pick up column names like 'gen', 'genta', 'J01GB03', 'tobra', 'Tobracin', etc.
|
||||
#'
|
||||
|
@ -53,6 +55,10 @@
|
|||
#' # `example_isolates` is a data set available in the AMR package.
|
||||
#' # See ?example_isolates.
|
||||
#' example_isolates
|
||||
#'
|
||||
#'
|
||||
#' # Examples sections below are split into 'base R', 'dplyr', and 'data.table':
|
||||
#'
|
||||
#'
|
||||
#' # base R ------------------------------------------------------------------
|
||||
#'
|
||||
|
@ -76,7 +82,7 @@
|
|||
#' # filter with multiple antibiotic selectors using c()
|
||||
#' example_isolates[all(c(carbapenems(), aminoglycosides()) == "R"), ]
|
||||
#'
|
||||
#' # filter + select in one go: get penicillins in carbapenems-resistant strains
|
||||
#' # filter + select in one go: get penicillins in carbapenem-resistant strains
|
||||
#' example_isolates[any(carbapenems() == "R"), penicillins()]
|
||||
#'
|
||||
#' # You can combine selectors with '&' to be more specific. For example,
|
||||
|
@ -86,13 +92,19 @@
|
|||
#' # and erythromycin is not a penicillin:
|
||||
#' example_isolates[, penicillins() & administrable_per_os()]
|
||||
#'
|
||||
#' # ab_selector() applies a filter in the `antibiotics` data set and is thus very
|
||||
#' # flexible. For instance, to select antibiotic columns with an oral DDD of at
|
||||
#' # least 1 gram:
|
||||
#' # ab_selector() applies a filter in the `antibiotics` data set and is thus
|
||||
#' # very flexible. For instance, to select antibiotic columns with an oral DDD
|
||||
#' # of at least 1 gram:
|
||||
#' example_isolates[, ab_selector(oral_ddd > 1 & oral_units == "g")]
|
||||
#'
|
||||
#' # dplyr -------------------------------------------------------------------
|
||||
#'
|
||||
#' \donttest{
|
||||
#' # dplyr -------------------------------------------------------------------
|
||||
#'
|
||||
#' if (require("dplyr")) {
|
||||
#' tibble(kefzol = random_sir(5)) %>%
|
||||
#' select(cephalosporins())
|
||||
#' }
|
||||
#'
|
||||
#' if (require("dplyr")) {
|
||||
#' # get AMR for all aminoglycosides e.g., per ward:
|
||||
#' example_isolates %>%
|
||||
|
@ -173,6 +185,35 @@
|
|||
#' z <- example_isolates %>% filter(if_all(carbapenems(), ~ .x == "R"))
|
||||
#' identical(x, y) && identical(y, z)
|
||||
#' }
|
||||
#'
|
||||
#'
|
||||
#' # data.table --------------------------------------------------------------
|
||||
#'
|
||||
#' # data.table is supported as well, just use it in the same way as with
|
||||
#' # base R, but add `with = FALSE` if using a single AB selector:
|
||||
#'
|
||||
#' if (require("data.table")) {
|
||||
#' dt <- as.data.table(example_isolates)
|
||||
#'
|
||||
#' print(
|
||||
#' dt[, carbapenems()] # incorrect, returns column *names*
|
||||
#' )
|
||||
#' print(
|
||||
#' dt[, carbapenems(), with = FALSE] # so `with = FALSE` is required
|
||||
#' )
|
||||
#'
|
||||
#' # for multiple selections or AB selectors, `with = FALSE` is not needed:
|
||||
#' print(
|
||||
#' dt[, c("mo", aminoglycosides())]
|
||||
#' )
|
||||
#' print(
|
||||
#' dt[, c(carbapenems(), aminoglycosides())]
|
||||
#' )
|
||||
#'
|
||||
#' # row filters are also supported:
|
||||
#' print(dt[any(carbapenems() == "S"), ])
|
||||
#' print(dt[any(carbapenems() == "S"), penicillins(), with = FALSE])
|
||||
#' }
|
||||
#' }
|
||||
ab_class <- function(ab_class,
|
||||
only_sir_columns = FALSE,
|
||||
|
|
|
@ -214,7 +214,7 @@ is_new_episode <- function(x, episode_days = NULL, case_free_days = NULL, ...) {
|
|||
}
|
||||
|
||||
exec_episode <- function(x, episode_days, case_free_days, ...) {
|
||||
stop_if_not(is.null(episode_days) || is.null(case_free_days),
|
||||
stop_ifnot(is.null(episode_days) || is.null(case_free_days),
|
||||
"either argument `episode_days` or argument `case_free_days` must be set.",
|
||||
call = -2
|
||||
)
|
||||
|
|
|
@ -43,6 +43,7 @@
|
|||
#' @param ab_result antibiotic results to test against, must be one or more values of "S", "I", or "R"
|
||||
#' @param confidence_level the confidence level for the returned confidence interval. For the calculation, the number of S or SI isolates, and R isolates are compared with the total number of available isolates with R, S, or I by using [binom.test()], i.e., the Clopper-Pearson method.
|
||||
#' @param side the side of the confidence interval to return. The default is `"both"` for a length 2 vector, but can also be (abbreviated as) `"min"`/`"left"`/`"lower"`/`"less"` or `"max"`/`"right"`/`"higher"`/`"greater"`.
|
||||
#' @param collapse a [logical] to indicate whether the output values should be 'collapsed', i.e. be merged together into one value, or a character value to use for collapsing
|
||||
#' @inheritSection as.sir Interpretation of SIR
|
||||
#' @details
|
||||
#' The function [resistance()] is equal to the function [proportion_R()]. The function [susceptibility()] is equal to the function [proportion_SI()].
|
||||
|
@ -112,6 +113,10 @@
|
|||
#' sir_confidence_interval(example_isolates$AMX,
|
||||
#' confidence_level = 0.975
|
||||
#' )
|
||||
#' sir_confidence_interval(example_isolates$AMX,
|
||||
#' confidence_level = 0.975,
|
||||
#' collapse = ", "
|
||||
#' )
|
||||
#'
|
||||
#' # determines %S+I:
|
||||
#' susceptibility(example_isolates$AMX)
|
||||
|
@ -260,10 +265,16 @@ sir_confidence_interval <- function(...,
|
|||
as_percent = FALSE,
|
||||
only_all_tested = FALSE,
|
||||
confidence_level = 0.95,
|
||||
side = "both") {
|
||||
side = "both",
|
||||
collapse = FALSE) {
|
||||
meet_criteria(ab_result, allow_class = c("character", "sir"), has_length = c(1, 2, 3), is_in = c("S", "I", "R"))
|
||||
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE)
|
||||
meet_criteria(as_percent, allow_class = "logical", has_length = 1)
|
||||
meet_criteria(only_all_tested, allow_class = "logical", has_length = 1)
|
||||
meet_criteria(confidence_level, allow_class = "numeric", is_positive = TRUE, has_length = 1)
|
||||
meet_criteria(side, allow_class = "character", has_length = 1, is_in = c("both", "b", "left", "l", "lower", "lowest", "less", "min", "right", "r", "higher", "highest", "greater", "g", "max"))
|
||||
meet_criteria(collapse, allow_class = c("logical", "character"), has_length = 1)
|
||||
|
||||
x <- tryCatch(
|
||||
sir_calc(...,
|
||||
ab_result = ab_result,
|
||||
|
@ -281,19 +292,7 @@ sir_confidence_interval <- function(...,
|
|||
error = function(e) stop_(gsub("in sir_calc(): ", "", e$message, fixed = TRUE), call = -5)
|
||||
)
|
||||
|
||||
if (n < minimum) {
|
||||
warning_("Introducing NA: ",
|
||||
ifelse(n == 0, "no", paste("only", n)),
|
||||
" results available for `sir_confidence_interval()` (`minimum` = ", minimum, ").",
|
||||
call = FALSE
|
||||
)
|
||||
if (as_percent == TRUE) {
|
||||
return(NA_character_)
|
||||
} else {
|
||||
return(NA_real_)
|
||||
}
|
||||
}
|
||||
|
||||
# this applies the Clopper-Pearson method
|
||||
out <- stats::binom.test(x = x, n = n, conf.level = confidence_level)$conf.int
|
||||
out <- set_clean_class(out, "double")
|
||||
|
||||
|
@ -302,11 +301,29 @@ sir_confidence_interval <- function(...,
|
|||
} else if (side %in% c("right", "r", "higher", "highest", "greater", "g", "max")) {
|
||||
out <- out[2]
|
||||
}
|
||||
if (as_percent == TRUE) {
|
||||
percentage(out, digits = 1)
|
||||
if (isTRUE(as_percent)) {
|
||||
out <- percentage(out, digits = 1)
|
||||
} else {
|
||||
out
|
||||
out <- round(out, digits = 3)
|
||||
}
|
||||
if (!isFALSE(collapse) && length(out) > 1) {
|
||||
out <- paste(out, collapse = ifelse(isTRUE(collapse), "-", collapse))
|
||||
}
|
||||
|
||||
if (n < minimum) {
|
||||
warning_("Introducing NA: ",
|
||||
ifelse(n == 0, "no", paste("only", n)),
|
||||
" results available for `sir_confidence_interval()` (`minimum` = ", minimum, ").",
|
||||
call = FALSE
|
||||
)
|
||||
if (is.character(out)) {
|
||||
return(NA_character_)
|
||||
} else {
|
||||
return(NA_real_)
|
||||
}
|
||||
}
|
||||
|
||||
out
|
||||
}
|
||||
|
||||
#' @rdname proportion
|
||||
|
|
33
index.md
33
index.md
|
@ -34,6 +34,8 @@ With the help of contributors from all corners of the world, the `AMR` package i
|
|||
|
||||
#### Filtering and selecting data
|
||||
|
||||
One of the most powerful functions of this package, aside from calculating and plotting AMR, is selecting and filtering based on antibiotic columns. This can be done using the so-called [antibiotic class selectors](https://msberends.github.io/AMR/reference/antibiotic_class_selectors.html) that work in base R, `dplyr` and `data.table`:
|
||||
|
||||
```r
|
||||
# AMR works great with dplyr, but it's not required or neccesary
|
||||
library(AMR)
|
||||
|
@ -41,8 +43,10 @@ library(dplyr)
|
|||
|
||||
example_isolates %>%
|
||||
mutate(bacteria = mo_fullname()) %>%
|
||||
# filtering functions for microorganisms:
|
||||
filter(mo_is_gram_negative(),
|
||||
mo_is_intrinsic_resistant(ab = "cefotax")) %>%
|
||||
# antibiotic selectors:
|
||||
select(bacteria,
|
||||
aminoglycosides(),
|
||||
carbapenems())
|
||||
|
@ -66,13 +70,18 @@ With only having defined a row filter on Gram-negative bacteria with intrinsic r
|
|||
A base R equivalent would be:
|
||||
|
||||
```r
|
||||
library(AMR)
|
||||
example_isolates$bacteria <- mo_fullname(example_isolates$mo)
|
||||
example_isolates[which(mo_is_gram_negative() &
|
||||
mo_is_intrinsic_resistant(ab = "cefotax")),
|
||||
c("bacteria", aminoglycosides(), carbapenems())]
|
||||
```
|
||||
|
||||
This base R snippet will work in any version of R since April 2013 (R-3.0).
|
||||
This base R code will work in any version of R since April 2013 (R-3.0). Moreover, this code works identically with the `data.table` package, only by starting with:
|
||||
|
||||
```r
|
||||
example_isolates <- data.table::as.data.table(example_isolates)
|
||||
```
|
||||
|
||||
#### Generating antibiograms
|
||||
|
||||
|
@ -131,6 +140,25 @@ antibiogram(example_isolates,
|
|||
|
||||
For a manual approach, you can use the `resistance` or `susceptibility()` function:
|
||||
|
||||
```r
|
||||
example_isolates %>%
|
||||
# group by ward:
|
||||
group_by(ward) %>%
|
||||
# calculate AMR using resistance() for gentamicin and tobramycin
|
||||
# and get their 95% confidence intervals using sir_confidence_interval():
|
||||
summarise(across(c(GEN, TOB),
|
||||
list(total_R = resistance,
|
||||
conf_int = function(x) sir_confidence_interval(x, collapse = "-"))))
|
||||
```
|
||||
|
||||
|ward | GEN_total_R|GEN_conf_int | TOB_total_R|TOB_conf_int |
|
||||
|:---------:|:----------:|:-----------:|:----------:|:-----------:|
|
||||
|Clinical | 0.229 |0.205-0.254 | 0.315 |0.284-0.347 |
|
||||
|ICU | 0.290 |0.253-0.330 | 0.400 |0.353-0.449 |
|
||||
|Outpatient | 0.200 |0.131-0.285 | 0.368 |0.254-0.493 |
|
||||
|
||||
Or use [antibiotic class selectors](https://msberends.github.io/AMR/reference/antibiotic_class_selectors.html) to select a series of antibiotic columns:
|
||||
|
||||
```r
|
||||
library(AMR)
|
||||
library(dplyr)
|
||||
|
@ -138,8 +166,7 @@ library(dplyr)
|
|||
out <- example_isolates %>%
|
||||
# group by ward:
|
||||
group_by(ward) %>%
|
||||
# calculate AMR using resistance(), over all aminoglycosides
|
||||
# and polymyxins:
|
||||
# calculate AMR using resistance(), over all aminoglycosides and polymyxins:
|
||||
summarise(across(c(aminoglycosides(), polymyxins()),
|
||||
resistance))
|
||||
out
|
||||
|
|
|
@ -118,10 +118,12 @@ not_intrinsic_resistant(
|
|||
(internally) a \link{character} vector of column names, with additional class \code{"ab_selector"}
|
||||
}
|
||||
\description{
|
||||
These functions allow for filtering rows and selecting columns based on antibiotic test results that are of a specific antibiotic class or group, without the need to define the columns or antibiotic abbreviations. In short, if you have a column name that resembles an antimicrobial drug, it will be picked up by any of these functions that matches its pharmaceutical class: "cefazolin", "CZO" and "J01DB04" will all be picked up by \code{\link[=cephalosporins]{cephalosporins()}}.
|
||||
These functions allow for filtering rows and selecting columns based on antibiotic test results that are of a specific antibiotic class or group (according to the \link{antibiotics} data set), without the need to define the columns or antibiotic abbreviations.
|
||||
|
||||
In short, if you have a column name that resembles an antimicrobial drug, it will be picked up by any of these functions that matches its pharmaceutical class: "cefazolin", "kefzol", "CZO" and "J01DB04" will all be picked up by \code{\link[=cephalosporins]{cephalosporins()}}.
|
||||
}
|
||||
\details{
|
||||
These functions can be used in data set calls for selecting columns and filtering rows. They are heavily inspired by the \link[tidyselect:language]{Tidyverse selection helpers} such as \code{\link[tidyselect:everything]{everything()}}, but also work in base \R and not only in \code{dplyr} verbs. Nonetheless, they are very convenient to use with \code{dplyr} functions such as \code{\link[dplyr:select]{select()}}, \code{\link[dplyr:filter]{filter()}} and \code{\link[dplyr:summarise]{summarise()}}, see \emph{Examples}.
|
||||
These functions can be used in data set calls for selecting columns and filtering rows. They work with base \R, the Tidyverse, and \code{data.table}. They are heavily inspired by the \link[tidyselect:language]{Tidyverse selection helpers} such as \code{\link[tidyselect:everything]{everything()}}, but are not limited to \code{dplyr} verbs. Nonetheless, they are very convenient to use with \code{dplyr} functions such as \code{\link[dplyr:select]{select()}}, \code{\link[dplyr:filter]{filter()}} and \code{\link[dplyr:summarise]{summarise()}}, see \emph{Examples}.
|
||||
|
||||
All columns in the data in which these functions are called will be searched for known antibiotic names, abbreviations, brand names, and codes (ATC, EARS-Net, WHO, etc.) according to the \link{antibiotics} data set. This means that a selector such as \code{\link[=aminoglycosides]{aminoglycosides()}} will pick up column names like 'gen', 'genta', 'J01GB03', 'tobra', 'Tobracin', etc.
|
||||
|
||||
|
@ -174,6 +176,10 @@ All data sets in this \code{AMR} package (about microorganisms, antibiotics, SIR
|
|||
# See ?example_isolates.
|
||||
example_isolates
|
||||
|
||||
|
||||
# Examples sections below are split into 'base R', 'dplyr', and 'data.table':
|
||||
|
||||
|
||||
# base R ------------------------------------------------------------------
|
||||
|
||||
# select columns 'IPM' (imipenem) and 'MEM' (meropenem)
|
||||
|
@ -196,7 +202,7 @@ example_isolates[all(carbapenems()), ]
|
|||
# filter with multiple antibiotic selectors using c()
|
||||
example_isolates[all(c(carbapenems(), aminoglycosides()) == "R"), ]
|
||||
|
||||
# filter + select in one go: get penicillins in carbapenems-resistant strains
|
||||
# filter + select in one go: get penicillins in carbapenem-resistant strains
|
||||
example_isolates[any(carbapenems() == "R"), penicillins()]
|
||||
|
||||
# You can combine selectors with '&' to be more specific. For example,
|
||||
|
@ -206,13 +212,19 @@ example_isolates[any(carbapenems() == "R"), penicillins()]
|
|||
# and erythromycin is not a penicillin:
|
||||
example_isolates[, penicillins() & administrable_per_os()]
|
||||
|
||||
# ab_selector() applies a filter in the `antibiotics` data set and is thus very
|
||||
# flexible. For instance, to select antibiotic columns with an oral DDD of at
|
||||
# least 1 gram:
|
||||
# ab_selector() applies a filter in the `antibiotics` data set and is thus
|
||||
# very flexible. For instance, to select antibiotic columns with an oral DDD
|
||||
# of at least 1 gram:
|
||||
example_isolates[, ab_selector(oral_ddd > 1 & oral_units == "g")]
|
||||
|
||||
# dplyr -------------------------------------------------------------------
|
||||
\donttest{
|
||||
# dplyr -------------------------------------------------------------------
|
||||
|
||||
if (require("dplyr")) {
|
||||
tibble(kefzol = random_sir(5)) \%>\%
|
||||
select(cephalosporins())
|
||||
}
|
||||
|
||||
if (require("dplyr")) {
|
||||
# get AMR for all aminoglycosides e.g., per ward:
|
||||
example_isolates \%>\%
|
||||
|
@ -293,5 +305,34 @@ if (require("dplyr")) {
|
|||
z <- example_isolates \%>\% filter(if_all(carbapenems(), ~ .x == "R"))
|
||||
identical(x, y) && identical(y, z)
|
||||
}
|
||||
|
||||
|
||||
# data.table --------------------------------------------------------------
|
||||
|
||||
# data.table is supported as well, just use it in the same way as with
|
||||
# base R, but add `with = FALSE` if using a single AB selector:
|
||||
|
||||
if (require("data.table")) {
|
||||
dt <- as.data.table(example_isolates)
|
||||
|
||||
print(
|
||||
dt[, carbapenems()] # incorrect, returns column *names*
|
||||
)
|
||||
print(
|
||||
dt[, carbapenems(), with = FALSE] # so `with = FALSE` is required
|
||||
)
|
||||
|
||||
# for multiple selections or AB selectors, `with = FALSE` is not needed:
|
||||
print(
|
||||
dt[, c("mo", aminoglycosides())]
|
||||
)
|
||||
print(
|
||||
dt[, c(carbapenems(), aminoglycosides())]
|
||||
)
|
||||
|
||||
# row filters are also supported:
|
||||
print(dt[any(carbapenems() == "S"), ])
|
||||
print(dt[any(carbapenems() == "S"), penicillins(), with = FALSE])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -29,7 +29,8 @@ sir_confidence_interval(
|
|||
as_percent = FALSE,
|
||||
only_all_tested = FALSE,
|
||||
confidence_level = 0.95,
|
||||
side = "both"
|
||||
side = "both",
|
||||
collapse = FALSE
|
||||
)
|
||||
|
||||
proportion_R(..., minimum = 30, as_percent = FALSE, only_all_tested = FALSE)
|
||||
|
@ -77,6 +78,8 @@ sir_df(
|
|||
|
||||
\item{side}{the side of the confidence interval to return. The default is \code{"both"} for a length 2 vector, but can also be (abbreviated as) \code{"min"}/\code{"left"}/\code{"lower"}/\code{"less"} or \code{"max"}/\code{"right"}/\code{"higher"}/\code{"greater"}.}
|
||||
|
||||
\item{collapse}{a \link{logical} to indicate whether the output values should be 'collapsed', i.e. be merged together into one value, or a character value to use for collapsing}
|
||||
|
||||
\item{data}{a \link{data.frame} containing columns with class \code{\link{sir}} (see \code{\link[=as.sir]{as.sir()}})}
|
||||
|
||||
\item{translate_ab}{a column name of the \link{antibiotics} data set to translate the antibiotic abbreviations to, using \code{\link[=ab_property]{ab_property()}}}
|
||||
|
@ -172,6 +175,10 @@ sir_confidence_interval(example_isolates$AMX)
|
|||
sir_confidence_interval(example_isolates$AMX,
|
||||
confidence_level = 0.975
|
||||
)
|
||||
sir_confidence_interval(example_isolates$AMX,
|
||||
confidence_level = 0.975,
|
||||
collapse = ", "
|
||||
)
|
||||
|
||||
# determines \%S+I:
|
||||
susceptibility(example_isolates$AMX)
|
||||
|
|
Loading…
Reference in New Issue