1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-25 05:04:37 +01:00

fix SIR interpretation for uti

This commit is contained in:
dr. M.S. (Matthijs) Berends 2024-05-31 21:24:35 +02:00
parent 60c6c21e45
commit 7c1b564648
4 changed files with 70 additions and 36 deletions

View File

@ -1,5 +1,5 @@
Package: AMR
Version: 2.1.1.9036
Version: 2.1.1.9037
Date: 2024-05-31
Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR)

View File

@ -1,4 +1,4 @@
# AMR 2.1.1.9036
# AMR 2.1.1.9037
*(this beta version will eventually become v3.0. We're happy to reach a new major milestone soon, which will be all about the new One Health support!)*
@ -21,7 +21,7 @@ This package now supports not only tools for AMR data analysis in clinical setti
* Function `mo_group_members()` to retrieve the member microorganisms of a microorganism group. For example, `mo_group_members("Strep group C")` returns a vector of all microorganisms that are in that group.
## Changed
* For SIR interpretation, it is now possible to use column names for argument `ab` and `mo`: `as.sir(..., ab = "column1", mo = "column2")`. This greatly improves the flexibility for users.
* For SIR interpretation, it is now possible to use column names for argument `ab`, `mo`, and `uti`: `as.sir(..., ab = "column1", mo = "column2", uti = "column3")`. This greatly improves the flexibility for users.
* For MICs:
* Added as valid levels: 4096, 6 powers of 0.0625, and 5 powers of 192 (192, 384, 576, 768, 960)
* Added new argument `keep_operators` to `as.mic()`. This can be `"all"` (default), `"none"`, or `"edges"`. This argument is also available in the new `rescale_mic()` and `scale_*_mic()` functions.

82
R/sir.R
View File

@ -31,17 +31,17 @@
#'
#' @description Clean up existing SIR values, or interpret minimum inhibitory concentration (MIC) values and disk diffusion diameters according to EUCAST or CLSI. [as.sir()] transforms the input to a new class [`sir`], which is an ordered [factor].
#'
#' These breakpoints are currently available:
#' - For **clinical microbiology** from EUCAST `r min(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "EUCAST" & type == "human")$guideline)))`-`r max(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "EUCAST" & type == "human")$guideline)))` and CLSI `r min(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "CLSI" & type == "human")$guideline)))`-`r max(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "CLSI" & type == "human")$guideline)))`;
#' - For **veterinary microbiology** from EUCAST `r min(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "EUCAST" & type == "animal")$guideline)))`-`r max(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "EUCAST" & type == "animal")$guideline)))` and CLSI `r min(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "CLSI" & type == "animal")$guideline)))`-`r max(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "CLSI" & type == "animal")$guideline)))`;
#' - ECOFFs (Epidemiological cut-off values) from EUCAST `r min(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "EUCAST" & type == "ECOFF")$guideline)))`-`r max(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "EUCAST" & type == "ECOFF")$guideline)))` and CLSI `r min(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "CLSI" & type == "ECOFF")$guideline)))`-`r max(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "CLSI" & type == "ECOFF")$guideline)))`.
#' These breakpoints are currently implemented:
#' - For **clinical microbiology**: EUCAST `r min(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "EUCAST" & type == "human")$guideline)))`-`r max(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "EUCAST" & type == "human")$guideline)))` and CLSI `r min(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "CLSI" & type == "human")$guideline)))`-`r max(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "CLSI" & type == "human")$guideline)))`;
#' - For **veterinary microbiology**: EUCAST `r min(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "EUCAST" & type == "animal")$guideline)))`-`r max(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "EUCAST" & type == "animal")$guideline)))` and CLSI `r min(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "CLSI" & type == "animal")$guideline)))`-`r max(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "CLSI" & type == "animal")$guideline)))`;
#' - ECOFFs (Epidemiological cut-off values): EUCAST `r min(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "EUCAST" & type == "ECOFF")$guideline)))`-`r max(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "EUCAST" & type == "ECOFF")$guideline)))` and CLSI `r min(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "CLSI" & type == "ECOFF")$guideline)))`-`r max(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "CLSI" & type == "ECOFF")$guideline)))`.
#'
#' All breakpoints used for interpretation are available in our [clinical_breakpoints] data set.
#' @rdname as.sir
#' @param x vector of values (for class [`mic`]: MIC values in mg/L, for class [`disk`]: a disk diffusion radius in millimetres)
#' @param mo a vector (or column name) with [character]s that can be coerced to valid microorganism codes with [as.mo()], can be left empty to determine it automatically
#' @param ab a vector (or column name) with [character]s that can be coerced to a valid antimicrobial drug code with [as.ab()]
#' @param uti (Urinary Tract Infection) A vector with [logical]s (`TRUE` or `FALSE`) to specify whether a UTI specific interpretation from the guideline should be chosen. For using [as.sir()] on a [data.frame], this can also be a column containing [logical]s or when left blank, the data set will be searched for a column 'specimen', and rows within this column containing 'urin' (such as 'urine', 'urina') will be regarded isolates from a UTI. See *Examples*.
#' @param uti (Urinary Tract Infection) a vector (or column name) with [logical]s (`TRUE` or `FALSE`) to specify whether a UTI specific interpretation from the guideline should be chosen. For using [as.sir()] on a [data.frame], this can also be a column containing [logical]s or when left blank, the data set will be searched for a column 'specimen', and rows within this column containing 'urin' (such as 'urine', 'urina') will be regarded isolates from a UTI. See *Examples*.
#' @inheritParams first_isolate
#' @param guideline defaults to EUCAST `r max(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "EUCAST")$guideline)))` (the latest implemented EUCAST guideline in the [AMR::clinical_breakpoints] data set), but can be set with the [package option][AMR-options] [`AMR_guideline`][AMR-options]. Currently supports EUCAST (`r min(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "EUCAST")$guideline)))`-`r max(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "EUCAST")$guideline)))`) and CLSI (`r min(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "CLSI")$guideline)))`-`r max(as.integer(gsub("[^0-9]", "", subset(AMR::clinical_breakpoints, guideline %like% "CLSI")$guideline)))`), see *Details*.
#' @param conserve_capped_values a [logical] to indicate that MIC values starting with `">"` (but not `">="`) must always return "R" , and that MIC values starting with `"<"` (but not `"<="`) must always return "S"
@ -64,9 +64,11 @@
#'
#' 2. For **interpreting minimum inhibitory concentration (MIC) values** according to EUCAST or CLSI. You must clean your MIC values first using [as.mic()], that also gives your columns the new data class [`mic`]. Also, be sure to have a column with microorganism names or codes. It will be found automatically, but can be set manually using the `mo` argument.
#' * Using `dplyr`, SIR interpretation can be done very easily with either:
#' ```
#' ```r
#' your_data %>% mutate_if(is.mic, as.sir)
#' your_data %>% mutate(across(where(is.mic), as.sir))
#' your_data %>% mutate_if(is.mic, as.sir, ab = "column_with_antibiotics", mo = "column_with_microorganisms")
#' your_data %>% mutate_if(is.mic, as.sir, ab = c("cipro", "ampicillin", ...), mo = c("E. coli", "K. pneumoniae", ...))
#'
#' # for veterinary breakpoints, also set `host`:
#' your_data %>% mutate_if(is.mic, as.sir, host = "column_with_animal_hosts", guideline = "CLSI")
@ -74,9 +76,11 @@
#' * Operators like "<=" will be stripped before interpretation. When using `conserve_capped_values = TRUE`, an MIC value of e.g. ">2" will always return "R", even if the breakpoint according to the chosen guideline is ">=4". This is to prevent that capped values from raw laboratory data would not be treated conservatively. The default behaviour (`conserve_capped_values = FALSE`) considers ">2" to be lower than ">=4" and might in this case return "S" or "I".
#' 3. For **interpreting disk diffusion diameters** according to EUCAST or CLSI. You must clean your disk zones first using [as.disk()], that also gives your columns the new data class [`disk`]. Also, be sure to have a column with microorganism names or codes. It will be found automatically, but can be set manually using the `mo` argument.
#' * Using `dplyr`, SIR interpretation can be done very easily with either:
#' ```
#' ```r
#' your_data %>% mutate_if(is.disk, as.sir)
#' your_data %>% mutate(across(where(is.disk), as.sir))
#' your_data %>% mutate_if(is.disk, as.sir, ab = "column_with_antibiotics", mo = "column_with_microorganisms")
#' your_data %>% mutate_if(is.disk, as.sir, ab = c("cipro", "ampicillin", ...), mo = c("E. coli", "K. pneumoniae", ...))
#'
#' # for veterinary breakpoints, also set `host`:
#' your_data %>% mutate_if(is.disk, as.sir, host = "column_with_animal_hosts", guideline = "CLSI")
@ -543,7 +547,7 @@ as.sir.data.frame <- function(x,
}
if (!is.null(col_uti)) {
if (is.logical(col_uti)) {
# already a [logical] vector as input
# already a logical vector as input
if (length(col_uti) == 1) {
uti <- rep(col_uti, NROW(x))
} else {
@ -763,10 +767,10 @@ as_sir_method <- function(method_short,
host,
...) {
meet_criteria(x, allow_NA = TRUE, .call_depth = -2)
meet_criteria(mo, allow_class = c("mo", "character"), allow_NULL = TRUE, .call_depth = -2)
meet_criteria(ab, allow_class = c("ab", "character"), .call_depth = -2)
meet_criteria(mo, allow_class = c("mo", "character"), has_length = c(1, length(x)), allow_NULL = TRUE, .call_depth = -2)
meet_criteria(ab, allow_class = c("ab", "character"), has_length = c(1, length(x)), .call_depth = -2)
meet_criteria(guideline, allow_class = "character", has_length = 1, .call_depth = -2)
meet_criteria(uti, allow_class = "logical", has_length = c(1, length(x)), allow_NULL = TRUE, allow_NA = TRUE, .call_depth = -2)
meet_criteria(uti, allow_class = c("logical", "character"), has_length = c(1, length(x)), allow_NULL = TRUE, allow_NA = TRUE, .call_depth = -2)
meet_criteria(conserve_capped_values, allow_class = "logical", has_length = 1, .call_depth = -2)
meet_criteria(add_intrinsic_resistance, allow_class = "logical", has_length = 1, .call_depth = -2)
meet_criteria(reference_data, allow_class = "data.frame", .call_depth = -2)
@ -816,7 +820,7 @@ as_sir_method <- function(method_short,
# get ab
if (!is.null(current_df) && length(ab) == 1 && ab %in% colnames(current_df) && any(current_df[[ab]] %like% "[A-Z]", na.rm = TRUE)) {
ab <- current_df[[ab]]
} else {
} else if (length(ab) != length(x)) {
# for dplyr's across()
cur_column_dplyr <- import_fn("cur_column", "dplyr", error_on_fail = FALSE)
if (!is.null(cur_column_dplyr) && is.data.frame(current_df)) {
@ -831,7 +835,7 @@ as_sir_method <- function(method_short,
if (!is.null(current_df) && length(mo) == 1 && mo %in% colnames(current_df)) {
mo_var_found <- paste0(" based on column '", font_bold(mo), "'")
mo <- current_df[[mo]]
} else {
} else if (length(mo) != length(x)) {
mo_var_found <- ""
if (is.null(mo)) {
tryCatch(
@ -840,7 +844,7 @@ as_sir_method <- function(method_short,
mo <- NULL
try(
{
mo <- suppressMessages(search_type_in_df(df, "mo"))
mo <- suppressMessages(search_type_in_df(df, "mo", add_col_prefix = FALSE))
},
silent = TRUE
)
@ -862,6 +866,32 @@ as_sir_method <- function(method_short,
call = FALSE
)
}
# get uti
if (!is.null(current_df) && length(uti) == 1 && uti %in% colnames(current_df)) {
uti <- current_df[[uti]]
} else if (length(uti) != length(x)) {
if (is.null(uti)) {
tryCatch(
{
df <- get_current_data(arg_name = "uti", call = -3) # will return an error if not found
uti <- NULL
try(
{
uti <- suppressMessages(search_type_in_df(df, "uti", add_col_prefix = FALSE))
},
silent = TRUE
)
if (!is.null(df) && !is.null(uti) && is.data.frame(df)) {
uti <- df[, uti, drop = TRUE]
}
},
error = function(e) {
uti <- NULL
}
)
}
}
if (length(ab) == 1 && ab %like% paste0("as.", method_short)) {
stop_("No unambiguous name was supplied about the antibiotic (argument `ab`). See ?as.sir.", call = FALSE)
@ -899,6 +929,7 @@ as_sir_method <- function(method_short,
if (length(uti) == 1) {
uti <- rep(uti, length(x))
}
uti[is.na(uti)] <- FALSE
if (isTRUE(add_intrinsic_resistance) && guideline_coerced %unlike% "EUCAST") {
if (message_not_thrown_before("as.sir", "intrinsic")) {
warning_("in `as.sir()`: using 'add_intrinsic_resistance' is only useful when using EUCAST guidelines, since the rules for intrinsic resistance are based on EUCAST.")
@ -918,7 +949,7 @@ as_sir_method <- function(method_short,
")")
# this intro text will also be printed in the progress bar if the `progress` package is installed
intro_txt <- paste0("Interpreting ", method_long, ": ", ifelse(isTRUE(list(...)$is_data.frame), "column ", ""),
ifelse(length(unique(agent_formatted)) == 1, unique(agent_formatted), paste0("for ", vector_and(ab, quotes = FALSE))),
ifelse(length(unique(agent_formatted)) == 1, unique(agent_formatted), paste0("for ", vector_and(ab, quotes = FALSE, sort = FALSE))),
mo_var_found,
ifelse(identical(reference_data, AMR::clinical_breakpoints),
paste0(", ", font_bold(guideline_coerced)),
@ -1026,7 +1057,7 @@ as_sir_method <- function(method_short,
ab_current <- df_unique[i, "ab", drop = TRUE]
host_current <- df_unique[i, "host", drop = TRUE]
uti_current <- df_unique[i, "uti", drop = TRUE]
if (is.na(uti_current)) {
if (isFALSE(uti_current)) {
# no preference, so no filter on UTIs
rows <- which(df$mo == mo_current & df$ab == ab_current & df$host == host_current)
} else {
@ -1073,21 +1104,20 @@ as_sir_method <- function(method_short,
breakpoints_current$host_index <- match(breakpoints_current$host, c("human", "ECOFF", AMR_env$host_preferred_order))
# sort on host and taxonomic rank
# (this will prefer species breakpoints over order breakpoints)
if (is.na(unique(uti_current))) {
# (this will e.g. prefer 'species' breakpoints over 'order' breakpoints)
if (all(uti_current == FALSE, na.rm = TRUE)) {
breakpoints_current <- breakpoints_current %pm>%
# this will put UTI = FALSE first, then UTI = TRUE, then UTI = NA
pm_arrange(host_index, rank_index, uti) # 'uti' is a column in data set 'clinical_breakpoints'
} else if (unique(uti_current) == TRUE) {
# this will put UTI = FALSE first, then UTI = NA, then UTI = TRUE
pm_mutate(uti_index = ifelse(uti == FALSE, 1,
ifelse(is.na(uti), 2,
3))) %pm>%
# be as specific as possible (i.e. prefer species over genus):
pm_arrange(host_index, rank_index, uti_index)
} else if (all(uti_current == TRUE, na.rm = TRUE)) {
breakpoints_current <- breakpoints_current %pm>%
subset(uti == TRUE) %pm>%
# be as specific as possible (i.e. prefer species over genus):
pm_arrange(host_index, rank_index)
} else if (unique(uti_current) == FALSE) {
breakpoints_current <- breakpoints_current %pm>%
subset(uti == FALSE) %pm>%
# be as specific as possible (i.e. prefer species over genus):
pm_arrange(host_index, rank_index)
}
if (NROW(breakpoints_current) == 0) {

View File

@ -104,7 +104,7 @@ sir_interpretation_history(clean = FALSE)
\item{guideline}{defaults to EUCAST 2023 (the latest implemented EUCAST guideline in the \link{clinical_breakpoints} data set), but can be set with the \link[=AMR-options]{package option} \code{\link[=AMR-options]{AMR_guideline}}. Currently supports EUCAST (2011-2023) and CLSI (2011-2023), see \emph{Details}.}
\item{uti}{(Urinary Tract Infection) A vector with \link{logical}s (\code{TRUE} or \code{FALSE}) to specify whether a UTI specific interpretation from the guideline should be chosen. For using \code{\link[=as.sir]{as.sir()}} on a \link{data.frame}, this can also be a column containing \link{logical}s or when left blank, the data set will be searched for a column 'specimen', and rows within this column containing 'urin' (such as 'urine', 'urina') will be regarded isolates from a UTI. See \emph{Examples}.}
\item{uti}{(Urinary Tract Infection) a vector (or column name) with \link{logical}s (\code{TRUE} or \code{FALSE}) to specify whether a UTI specific interpretation from the guideline should be chosen. For using \code{\link[=as.sir]{as.sir()}} on a \link{data.frame}, this can also be a column containing \link{logical}s or when left blank, the data set will be searched for a column 'specimen', and rows within this column containing 'urin' (such as 'urine', 'urina') will be regarded isolates from a UTI. See \emph{Examples}.}
\item{conserve_capped_values}{a \link{logical} to indicate that MIC values starting with \code{">"} (but not \code{">="}) must always return "R" , and that MIC values starting with \code{"<"} (but not \code{"<="}) must always return "S"}
@ -130,11 +130,11 @@ Ordered \link{factor} with new class \code{sir}
\description{
Clean up existing SIR values, or interpret minimum inhibitory concentration (MIC) values and disk diffusion diameters according to EUCAST or CLSI. \code{\link[=as.sir]{as.sir()}} transforms the input to a new class \code{\link{sir}}, which is an ordered \link{factor}.
These breakpoints are currently available:
These breakpoints are currently implemented:
\itemize{
\item For \strong{clinical microbiology} from EUCAST 2011-2023 and CLSI 2011-2023;
\item For \strong{veterinary microbiology} from EUCAST 2021-2023 and CLSI 2019-2023;
\item ECOFFs (Epidemiological cut-off values) from EUCAST 2020-2023 and CLSI 2022-2023.
\item For \strong{clinical microbiology}: EUCAST 2011-2023 and CLSI 2011-2023;
\item For \strong{veterinary microbiology}: EUCAST 2021-2023 and CLSI 2019-2023;
\item ECOFFs (Epidemiological cut-off values): EUCAST 2020-2023 and CLSI 2022-2023.
}
All breakpoints used for interpretation are available in our \link{clinical_breakpoints} data set.
@ -150,8 +150,10 @@ The \code{\link[=as.sir]{as.sir()}} function can work in four ways:
\itemize{
\item Using \code{dplyr}, SIR interpretation can be done very easily with either:
\if{html}{\out{<div class="sourceCode">}}\preformatted{your_data \%>\% mutate_if(is.mic, as.sir)
\if{html}{\out{<div class="sourceCode r">}}\preformatted{your_data \%>\% mutate_if(is.mic, as.sir)
your_data \%>\% mutate(across(where(is.mic), as.sir))
your_data \%>\% mutate_if(is.mic, as.sir, ab = "column_with_antibiotics", mo = "column_with_microorganisms")
your_data \%>\% mutate_if(is.mic, as.sir, ab = c("cipro", "ampicillin", ...), mo = c("E. coli", "K. pneumoniae", ...))
# for veterinary breakpoints, also set `host`:
your_data \%>\% mutate_if(is.mic, as.sir, host = "column_with_animal_hosts", guideline = "CLSI")
@ -162,8 +164,10 @@ your_data \%>\% mutate_if(is.mic, as.sir, host = "column_with_animal_hosts", gui
\itemize{
\item Using \code{dplyr}, SIR interpretation can be done very easily with either:
\if{html}{\out{<div class="sourceCode">}}\preformatted{your_data \%>\% mutate_if(is.disk, as.sir)
\if{html}{\out{<div class="sourceCode r">}}\preformatted{your_data \%>\% mutate_if(is.disk, as.sir)
your_data \%>\% mutate(across(where(is.disk), as.sir))
your_data \%>\% mutate_if(is.disk, as.sir, ab = "column_with_antibiotics", mo = "column_with_microorganisms")
your_data \%>\% mutate_if(is.disk, as.sir, ab = c("cipro", "ampicillin", ...), mo = c("E. coli", "K. pneumoniae", ...))
# for veterinary breakpoints, also set `host`:
your_data \%>\% mutate_if(is.disk, as.sir, host = "column_with_animal_hosts", guideline = "CLSI")