mirror of
https://github.com/msberends/AMR.git
synced 2025-01-27 05:04:36 +01:00
fix for as.mo, added also_single_tested
This commit is contained in:
parent
032c0d51ef
commit
86b03577a7
@ -1,6 +1,6 @@
|
||||
Package: AMR
|
||||
Version: 0.4.0.9004
|
||||
Date: 2018-10-17
|
||||
Version: 0.4.0.9005
|
||||
Date: 2018-10-19
|
||||
Title: Antimicrobial Resistance Analysis
|
||||
Authors@R: c(
|
||||
person(
|
||||
|
@ -175,6 +175,8 @@ importFrom(data.table,as.data.table)
|
||||
importFrom(data.table,data.table)
|
||||
importFrom(data.table,setkey)
|
||||
importFrom(dplyr,"%>%")
|
||||
importFrom(dplyr,all_vars)
|
||||
importFrom(dplyr,any_vars)
|
||||
importFrom(dplyr,arrange)
|
||||
importFrom(dplyr,arrange_at)
|
||||
importFrom(dplyr,as_tibble)
|
||||
@ -184,7 +186,9 @@ importFrom(dplyr,case_when)
|
||||
importFrom(dplyr,desc)
|
||||
importFrom(dplyr,everything)
|
||||
importFrom(dplyr,filter)
|
||||
importFrom(dplyr,filter_all)
|
||||
importFrom(dplyr,full_join)
|
||||
importFrom(dplyr,funs)
|
||||
importFrom(dplyr,group_by)
|
||||
importFrom(dplyr,group_by_at)
|
||||
importFrom(dplyr,group_vars)
|
||||
@ -192,6 +196,7 @@ importFrom(dplyr,if_else)
|
||||
importFrom(dplyr,lag)
|
||||
importFrom(dplyr,left_join)
|
||||
importFrom(dplyr,mutate)
|
||||
importFrom(dplyr,mutate_all)
|
||||
importFrom(dplyr,mutate_at)
|
||||
importFrom(dplyr,n_distinct)
|
||||
importFrom(dplyr,progress_estimated)
|
||||
|
3
NEWS.md
3
NEWS.md
@ -11,10 +11,11 @@
|
||||
* Better error handling when rules cannot be applied (i.e. new values could not be inserted)
|
||||
* The amount of affected values will now only be measured once per row/column combination
|
||||
* Data set `septic_patients` now reflects these changes
|
||||
* Empty values as input for `as.mo` will be processed faster
|
||||
* Tremendous speed improvement for `as.mo` (and consequently all `mo_*` functions), as empty values wil be ignored a priori
|
||||
* Fewer than 3 characters as input for `as.mo` will return NA
|
||||
* Added parameter `combine_IR` (TRUE/FALSE) to functions `portion_df` and `count_df`, to indicate that all values of I and R must be merged into one, so the output only consists of S vs. IR (susceptible vs. non-susceptible)
|
||||
* Fix for `portion_*(..., as_percent = TRUE)` when minimal amount of isolates would not be met
|
||||
* Added parameter `also_single_tested` for `portion_*` and `count_*` functions to also include cases where not all antibiotics were tested but at least one of the tested antibiotics includes the target antimicribial interpretation, see `?portion`
|
||||
* Using `portion_*` functions now throws a warning when total available isolate is below parameter `minimum`
|
||||
* Functions `as.mo`, `as.rsi` and `as.mic` will not set package name as attribute anymore
|
||||
* Data set `septic_patients` is now a `data.frame`, not a tibble anymore
|
||||
|
15
R/count.R
15
R/count.R
@ -92,56 +92,61 @@
|
||||
#' group_by(hospital_id) %>%
|
||||
#' count_df(translate = FALSE)
|
||||
#'
|
||||
count_R <- function(...) {
|
||||
count_R <- function(..., also_single_tested = FALSE) {
|
||||
rsi_calc(...,
|
||||
type = "R",
|
||||
include_I = FALSE,
|
||||
minimum = 0,
|
||||
as_percent = FALSE,
|
||||
also_single_tested = FALSE,
|
||||
only_count = TRUE)
|
||||
}
|
||||
|
||||
#' @rdname count
|
||||
#' @export
|
||||
count_IR <- function(...) {
|
||||
count_IR <- function(..., also_single_tested = FALSE) {
|
||||
rsi_calc(...,
|
||||
type = "R",
|
||||
include_I = TRUE,
|
||||
minimum = 0,
|
||||
as_percent = FALSE,
|
||||
also_single_tested = FALSE,
|
||||
only_count = TRUE)
|
||||
}
|
||||
|
||||
#' @rdname count
|
||||
#' @export
|
||||
count_I <- function(...) {
|
||||
count_I <- function(..., also_single_tested = FALSE) {
|
||||
rsi_calc(...,
|
||||
type = "I",
|
||||
include_I = FALSE,
|
||||
minimum = 0,
|
||||
as_percent = FALSE,
|
||||
also_single_tested = FALSE,
|
||||
only_count = TRUE)
|
||||
}
|
||||
|
||||
#' @rdname count
|
||||
#' @export
|
||||
count_SI <- function(...) {
|
||||
count_SI <- function(..., also_single_tested = FALSE) {
|
||||
rsi_calc(...,
|
||||
type = "S",
|
||||
include_I = TRUE,
|
||||
minimum = 0,
|
||||
as_percent = FALSE,
|
||||
also_single_tested = FALSE,
|
||||
only_count = TRUE)
|
||||
}
|
||||
|
||||
#' @rdname count
|
||||
#' @export
|
||||
count_S <- function(...) {
|
||||
count_S <- function(..., also_single_tested = FALSE) {
|
||||
rsi_calc(...,
|
||||
type = "S",
|
||||
include_I = FALSE,
|
||||
minimum = 0,
|
||||
as_percent = FALSE,
|
||||
also_single_tested = FALSE,
|
||||
only_count = TRUE)
|
||||
}
|
||||
|
||||
|
2
R/data.R
2
R/data.R
@ -175,7 +175,7 @@
|
||||
#' Translation table for Certe
|
||||
#'
|
||||
#' A data set containing all bacteria codes of Certe MMB. These codes can be joined to data with an ID from \code{\link{microorganisms}$mo} (using \code{\link{left_join_microorganisms}}). GLIMS codes can also be translated to valid \code{MO}s with \code{\link{guess_mo}}.
|
||||
#' @format A \code{\link{tibble}} with 2,664 observations and 2 variables:
|
||||
#' @format A \code{\link{tibble}} with 2,665 observations and 2 variables:
|
||||
#' \describe{
|
||||
#' \item{\code{certe}}{Code of microorganism according to Certe MMB}
|
||||
#' \item{\code{mo}}{Code of microorganism in \code{\link{microorganisms}}}
|
||||
|
41
R/eucast.R
41
R/eucast.R
@ -361,15 +361,20 @@ EUCAST_rules <- function(tbl,
|
||||
changed_results <<- changed_results + sum(before != after, na.rm = TRUE) # will be reset at start of every rule
|
||||
|
||||
if (verbose == TRUE) {
|
||||
verbose_new <- data.frame(rule_type = rule[1],
|
||||
rule_set = rule[2],
|
||||
force_to = to,
|
||||
found = length(before),
|
||||
changed = sum(before != after, na.rm = TRUE),
|
||||
stringsAsFactors = FALSE)
|
||||
verbose_new$target_columns <- list(unname(cols))
|
||||
verbose_new$target_rows <- list(unname(rows))
|
||||
verbose_info <<- rbind(verbose_info, verbose_new)
|
||||
for (i in 1:length(cols)) {
|
||||
# add new row for every affected column
|
||||
verbose_new <- data.frame(rule_type = rule[1],
|
||||
rule_set = rule[2],
|
||||
force_to = to,
|
||||
found = length(before),
|
||||
changed = sum(before != after, na.rm = TRUE),
|
||||
target_column = cols[i],
|
||||
stringsAsFactors = FALSE)
|
||||
verbose_new$target_rows <- list(unname(rows))
|
||||
rownames(verbose_new) <- NULL
|
||||
verbose_info <<- rbind(verbose_info, verbose_new)
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -410,15 +415,15 @@ EUCAST_rules <- function(tbl,
|
||||
# since ampicillin ^= amoxicillin, get the first from the latter (not in original table)
|
||||
if (!is.na(ampi) & !is.na(amox)) {
|
||||
if (verbose == TRUE) {
|
||||
cat("\n VERBOSE: transforming",
|
||||
length(which(tbl[, amox] == "S" & !tbl[, ampi] %in% c("S", "I", "R"))),
|
||||
"empty ampicillin fields to 'S' based on amoxicillin.")
|
||||
cat("\n VERBOSE: transforming",
|
||||
length(which(tbl[, amox] == "I" & !tbl[, ampi] %in% c("S", "I", "R"))),
|
||||
"empty ampicillin fields to 'I' based on amoxicillin.")
|
||||
cat("\n VERBOSE: transforming",
|
||||
length(which(tbl[, amox] == "R" & !tbl[, ampi] %in% c("S", "I", "R"))),
|
||||
"empty ampicillin fields to 'R' based on amoxicillin.\n")
|
||||
cat(bgGreen("\n VERBOSE: transforming",
|
||||
length(which(tbl[, amox] == "S" & !tbl[, ampi] %in% c("S", "I", "R"))),
|
||||
"empty ampicillin fields to 'S' based on amoxicillin. "))
|
||||
cat(bgGreen("\n VERBOSE: transforming",
|
||||
length(which(tbl[, amox] == "I" & !tbl[, ampi] %in% c("S", "I", "R"))),
|
||||
"empty ampicillin fields to 'I' based on amoxicillin. "))
|
||||
cat(bgGreen("\n VERBOSE: transforming",
|
||||
length(which(tbl[, amox] == "R" & !tbl[, ampi] %in% c("S", "I", "R"))),
|
||||
"empty ampicillin fields to 'R' based on amoxicillin. \n"))
|
||||
}
|
||||
tbl[which(tbl[, amox] == "S" & !tbl[, ampi] %in% c("S", "I", "R")), ampi] <- "S"
|
||||
tbl[which(tbl[, amox] == "I" & !tbl[, ampi] %in% c("S", "I", "R")), ampi] <- "I"
|
||||
|
11
R/mo.R
11
R/mo.R
@ -195,7 +195,7 @@ exec_as.mo <- function(x, Becker = FALSE, Lancefield = FALSE, allow_uncertain =
|
||||
if (all(x %in% AMR::microorganisms[, property])) {
|
||||
# already existing mo
|
||||
} else if (all(x %in% AMR::microorganisms[, "mo"])) {
|
||||
# existing mo codes
|
||||
# existing mo codes when not looking for property "mo"
|
||||
suppressWarnings(
|
||||
x <- data.frame(mo = x, stringsAsFactors = FALSE) %>%
|
||||
left_join(AMR::microorganisms, by = "mo") %>%
|
||||
@ -661,13 +661,12 @@ exec_as.mo <- function(x, Becker = FALSE, Lancefield = FALSE, allow_uncertain =
|
||||
x[x == MOs[mo == 'B_STRPTC_SAL', ..property][[1]][1L]] <- MOs[mo == 'B_STRPTC_GRK', ..property][[1]][1L]
|
||||
}
|
||||
|
||||
x_input_unique <- unique(x_input)
|
||||
# fill in empty values again
|
||||
x[is.na(x_input_unique) | is.null(x_input_unique) | identical(x_input_unique, "")] <- NA
|
||||
# comply to x, which is also unique and without empty values
|
||||
x_input_unique_nonempty <- unique(x_input[!is.na(x_input) & !is.null(x_input) & !identical(x_input, "")])
|
||||
|
||||
# left join the found results to the original input values (x_input)
|
||||
df_found <- data.frame(input = as.character(x_input_unique),
|
||||
found = x,
|
||||
df_found <- data.frame(input = as.character(x_input_unique_nonempty),
|
||||
found = as.character(x),
|
||||
stringsAsFactors = FALSE)
|
||||
df_input <- data.frame(input = as.character(x_input),
|
||||
stringsAsFactors = FALSE)
|
||||
|
21
R/portion.R
21
R/portion.R
@ -24,6 +24,7 @@
|
||||
#' @param ... one or more vectors (or columns) with antibiotic interpretations. They will be transformed internally with \code{\link{as.rsi}} if needed. Use multiple columns to calculate (the lack of) co-resistance: the probability where one of two drugs have a resistant or susceptible result. See Examples.
|
||||
#' @param minimum the minimal amount of available isolates. Any number lower than \code{minimum} will return \code{NA} with a warning. The default number of \code{30} isolates is advised by the Clinical and Laboratory Standards Institute (CLSI) as best practice, see Source.
|
||||
#' @param as_percent a logical to indicate whether the output must be returned as a hundred fold with \% sign (a character). A value of \code{0.123456} will then be returned as \code{"12.3\%"}.
|
||||
#' @param also_single_tested a logical to indicate whether (in combination therapies) also observations should be included where not all antibiotics were tested, but at least one of the tested antibiotics contains a target interpretation (e.g. S in case of \code{portion_S} and R in case of \code{portion_R}). \strong{This would lead to selection bias in almost all cases.}
|
||||
#' @param data a \code{data.frame} containing columns with class \code{rsi} (see \code{\link{as.rsi}})
|
||||
#' @param translate_ab a column name of the \code{\link{antibiotics}} data set to translate the antibiotic abbreviations to, using \code{\link{abname}}. This can be set with \code{\link{getOption}("get_antibiotic_names")}.
|
||||
#' @param combine_IR a logical to indicate whether all values of I and R must be merged into one, so the output only consists of S vs. IR (susceptible vs. non-susceptible)
|
||||
@ -134,12 +135,14 @@
|
||||
#' }
|
||||
portion_R <- function(...,
|
||||
minimum = 30,
|
||||
as_percent = FALSE) {
|
||||
as_percent = FALSE,
|
||||
also_single_tested = FALSE) {
|
||||
rsi_calc(...,
|
||||
type = "R",
|
||||
include_I = FALSE,
|
||||
minimum = minimum,
|
||||
as_percent = as_percent,
|
||||
also_single_tested = also_single_tested,
|
||||
only_count = FALSE)
|
||||
}
|
||||
|
||||
@ -147,12 +150,14 @@ portion_R <- function(...,
|
||||
#' @export
|
||||
portion_IR <- function(...,
|
||||
minimum = 30,
|
||||
as_percent = FALSE) {
|
||||
as_percent = FALSE,
|
||||
also_single_tested = FALSE) {
|
||||
rsi_calc(...,
|
||||
type = "R",
|
||||
include_I = TRUE,
|
||||
minimum = minimum,
|
||||
as_percent = as_percent,
|
||||
also_single_tested = also_single_tested,
|
||||
only_count = FALSE)
|
||||
}
|
||||
|
||||
@ -160,12 +165,14 @@ portion_IR <- function(...,
|
||||
#' @export
|
||||
portion_I <- function(...,
|
||||
minimum = 30,
|
||||
as_percent = FALSE) {
|
||||
as_percent = FALSE,
|
||||
also_single_tested = FALSE) {
|
||||
rsi_calc(...,
|
||||
type = "I",
|
||||
include_I = FALSE,
|
||||
minimum = minimum,
|
||||
as_percent = as_percent,
|
||||
also_single_tested = also_single_tested,
|
||||
only_count = FALSE)
|
||||
}
|
||||
|
||||
@ -173,12 +180,14 @@ portion_I <- function(...,
|
||||
#' @export
|
||||
portion_SI <- function(...,
|
||||
minimum = 30,
|
||||
as_percent = FALSE) {
|
||||
as_percent = FALSE,
|
||||
also_single_tested = FALSE) {
|
||||
rsi_calc(...,
|
||||
type = "S",
|
||||
include_I = TRUE,
|
||||
minimum = minimum,
|
||||
as_percent = as_percent,
|
||||
also_single_tested = also_single_tested,
|
||||
only_count = FALSE)
|
||||
}
|
||||
|
||||
@ -186,12 +195,14 @@ portion_SI <- function(...,
|
||||
#' @export
|
||||
portion_S <- function(...,
|
||||
minimum = 30,
|
||||
as_percent = FALSE) {
|
||||
as_percent = FALSE,
|
||||
also_single_tested = FALSE) {
|
||||
rsi_calc(...,
|
||||
type = "S",
|
||||
include_I = FALSE,
|
||||
minimum = minimum,
|
||||
as_percent = as_percent,
|
||||
also_single_tested = also_single_tested,
|
||||
only_count = FALSE)
|
||||
}
|
||||
|
||||
|
57
R/rsi_calc.R
57
R/rsi_calc.R
@ -16,12 +16,13 @@
|
||||
# GNU General Public License for more details. #
|
||||
# ==================================================================== #
|
||||
|
||||
#' @importFrom dplyr %>% pull
|
||||
#' @importFrom dplyr %>% pull all_vars any_vars filter_all funs mutate_all
|
||||
rsi_calc <- function(...,
|
||||
type,
|
||||
include_I,
|
||||
minimum,
|
||||
as_percent,
|
||||
also_single_tested,
|
||||
only_count) {
|
||||
|
||||
if (!is.logical(include_I)) {
|
||||
@ -33,6 +34,9 @@ rsi_calc <- function(...,
|
||||
if (!is.logical(as_percent)) {
|
||||
stop('`as_percent` must be logical', call. = FALSE)
|
||||
}
|
||||
if (!is.logical(also_single_tested)) {
|
||||
stop('`also_single_tested` must be logical', call. = FALSE)
|
||||
}
|
||||
|
||||
dots_df <- ...elt(1) # it needs this evaluation
|
||||
dots <- base::eval(base::substitute(base::alist(...)))
|
||||
@ -67,23 +71,53 @@ rsi_calc <- function(...,
|
||||
}
|
||||
|
||||
print_warning <- FALSE
|
||||
# check integrity of columns: force rsi class
|
||||
|
||||
type_trans <- as.integer(as.rsi(type))
|
||||
type_others <- setdiff(1:3, type_trans)
|
||||
|
||||
if (is.data.frame(x)) {
|
||||
rsi_integrity_check <- character(0)
|
||||
for (i in 1:ncol(x)) {
|
||||
# check integrity of columns: force rsi class
|
||||
if (!is.rsi(x %>% pull(i))) {
|
||||
x[, i] <- as.rsi(x[, i])
|
||||
rsi_integrity_check <- c(rsi_integrity_check, x %>% pull(i) %>% as.character())
|
||||
x[, i] <- suppressWarnings(as.rsi(x[, i])) # warning will be given later
|
||||
print_warning <- TRUE
|
||||
}
|
||||
x[, i] <- x %>% pull(i) %>% as.integer()
|
||||
}
|
||||
x <- apply(X = x,
|
||||
MARGIN = 1,
|
||||
FUN = min)
|
||||
if (length(rsi_integrity_check) > 0) {
|
||||
# this will give a warning for invalid results, of all input columns (so only 1 warning)
|
||||
rsi_integrity_check <- as.rsi(rsi_integrity_check)
|
||||
}
|
||||
|
||||
if (include_I == TRUE) {
|
||||
x <- x %>% mutate_all(funs(ifelse(. == 2, type_trans, .)))
|
||||
}
|
||||
|
||||
if (also_single_tested == TRUE) {
|
||||
# THE CHANCE THAT AT LEAST ONE RESULT IS type
|
||||
found <- x %>% filter_all(any_vars(. == type_trans)) %>% nrow()
|
||||
# THE CHANCE THAT AT LEAST ONE RESULT IS type OR ALL ARE TESTED
|
||||
total <- found + x %>% filter_all(all_vars(. %in% type_others)) %>% nrow()
|
||||
} else {
|
||||
x <- apply(X = x,
|
||||
MARGIN = 1,
|
||||
FUN = min)
|
||||
found <- sum(as.integer(x) == type_trans, na.rm = TRUE)
|
||||
total <- length(x) - sum(is.na(x))
|
||||
}
|
||||
} else {
|
||||
if (!is.rsi(x)) {
|
||||
x <- as.rsi(x)
|
||||
print_warning <- TRUE
|
||||
}
|
||||
x <- as.integer(x)
|
||||
if (include_I == TRUE) {
|
||||
x[x == 2] <- type_trans
|
||||
}
|
||||
found <- sum(x == type_trans, na.rm = TRUE)
|
||||
total <- length(x) - sum(is.na(x))
|
||||
}
|
||||
|
||||
if (print_warning == TRUE) {
|
||||
@ -91,21 +125,10 @@ rsi_calc <- function(...,
|
||||
call. = FALSE)
|
||||
}
|
||||
|
||||
if (type == "S") {
|
||||
found <- sum(as.integer(x) <= 1 + include_I, na.rm = TRUE)
|
||||
} else if (type == "I") {
|
||||
found <- sum(as.integer(x) == 2, na.rm = TRUE)
|
||||
} else if (type == "R") {
|
||||
found <- sum(as.integer(x) >= 3 - include_I, na.rm = TRUE)
|
||||
} else {
|
||||
stop("invalid type")
|
||||
}
|
||||
|
||||
if (only_count == TRUE) {
|
||||
return(found)
|
||||
}
|
||||
|
||||
total <- length(x) - sum(is.na(x))
|
||||
if (total < minimum) {
|
||||
warning("Introducing NA: only ", total, " results available (minimum set to ", minimum, ").", call. = FALSE)
|
||||
result <- NA
|
||||
|
Binary file not shown.
12
man/count.Rd
12
man/count.Rd
@ -15,15 +15,15 @@
|
||||
Wickham H. \strong{Tidy Data.} The Journal of Statistical Software, vol. 59, 2014. \url{http://vita.had.co.nz/papers/tidy-data.html}
|
||||
}
|
||||
\usage{
|
||||
count_R(...)
|
||||
count_R(..., also_single_tested = FALSE)
|
||||
|
||||
count_IR(...)
|
||||
count_IR(..., also_single_tested = FALSE)
|
||||
|
||||
count_I(...)
|
||||
count_I(..., also_single_tested = FALSE)
|
||||
|
||||
count_SI(...)
|
||||
count_SI(..., also_single_tested = FALSE)
|
||||
|
||||
count_S(...)
|
||||
count_S(..., also_single_tested = FALSE)
|
||||
|
||||
count_all(...)
|
||||
|
||||
@ -35,6 +35,8 @@ count_df(data, translate_ab = getOption("get_antibiotic_names",
|
||||
\arguments{
|
||||
\item{...}{one or more vectors (or columns) with antibiotic interpretations. They will be transformed internally with \code{\link{as.rsi}} if needed.}
|
||||
|
||||
\item{also_single_tested}{a logical to indicate whether (in combination therapies) also observations should be included where not all antibiotics were tested, but at least one of the tested antibiotics contains a target interpretation (e.g. S in case of \code{portion_S} and R in case of \code{portion_R}). \strong{This would lead to selection bias in almost all cases.}}
|
||||
|
||||
\item{data}{a \code{data.frame} containing columns with class \code{rsi} (see \code{\link{as.rsi}})}
|
||||
|
||||
\item{translate_ab}{a column name of the \code{\link{antibiotics}} data set to translate the antibiotic abbreviations to, using \code{\link{abname}}. This can be set with \code{\link{getOption}("get_antibiotic_names")}.}
|
||||
|
@ -4,7 +4,7 @@
|
||||
\name{microorganisms.certe}
|
||||
\alias{microorganisms.certe}
|
||||
\title{Translation table for Certe}
|
||||
\format{A \code{\link{tibble}} with 2,664 observations and 2 variables:
|
||||
\format{A \code{\link{tibble}} with 2,665 observations and 2 variables:
|
||||
\describe{
|
||||
\item{\code{certe}}{Code of microorganism according to Certe MMB}
|
||||
\item{\code{mo}}{Code of microorganism in \code{\link{microorganisms}}}
|
||||
|
@ -15,15 +15,20 @@
|
||||
Wickham H. \strong{Tidy Data.} The Journal of Statistical Software, vol. 59, 2014. \url{http://vita.had.co.nz/papers/tidy-data.html}
|
||||
}
|
||||
\usage{
|
||||
portion_R(..., minimum = 30, as_percent = FALSE)
|
||||
portion_R(..., minimum = 30, as_percent = FALSE,
|
||||
also_single_tested = FALSE)
|
||||
|
||||
portion_IR(..., minimum = 30, as_percent = FALSE)
|
||||
portion_IR(..., minimum = 30, as_percent = FALSE,
|
||||
also_single_tested = FALSE)
|
||||
|
||||
portion_I(..., minimum = 30, as_percent = FALSE)
|
||||
portion_I(..., minimum = 30, as_percent = FALSE,
|
||||
also_single_tested = FALSE)
|
||||
|
||||
portion_SI(..., minimum = 30, as_percent = FALSE)
|
||||
portion_SI(..., minimum = 30, as_percent = FALSE,
|
||||
also_single_tested = FALSE)
|
||||
|
||||
portion_S(..., minimum = 30, as_percent = FALSE)
|
||||
portion_S(..., minimum = 30, as_percent = FALSE,
|
||||
also_single_tested = FALSE)
|
||||
|
||||
portion_df(data, translate_ab = getOption("get_antibiotic_names",
|
||||
"official"), minimum = 30, as_percent = FALSE, combine_IR = FALSE)
|
||||
@ -35,6 +40,8 @@ portion_df(data, translate_ab = getOption("get_antibiotic_names",
|
||||
|
||||
\item{as_percent}{a logical to indicate whether the output must be returned as a hundred fold with \% sign (a character). A value of \code{0.123456} will then be returned as \code{"12.3\%"}.}
|
||||
|
||||
\item{also_single_tested}{a logical to indicate whether (in combination therapies) also observations should be included where not all antibiotics were tested, but at least one of the tested antibiotics contains a target interpretation (e.g. S in case of \code{portion_S} and R in case of \code{portion_R}). \strong{This would lead to selection bias in almost all cases.}}
|
||||
|
||||
\item{data}{a \code{data.frame} containing columns with class \code{rsi} (see \code{\link{as.rsi}})}
|
||||
|
||||
\item{translate_ab}{a column name of the \code{\link{antibiotics}} data set to translate the antibiotic abbreviations to, using \code{\link{abname}}. This can be set with \code{\link{getOption}("get_antibiotic_names")}.}
|
||||
|
@ -17,6 +17,9 @@ test_that("portions works", {
|
||||
expect_equal(septic_patients %>% portion_S(amcl, gent),
|
||||
0.9210074,
|
||||
tolerance = 0.001)
|
||||
expect_equal(septic_patients %>% portion_S(amcl, gent, also_single_tested = TRUE),
|
||||
0.9239669,
|
||||
tolerance = 0.001)
|
||||
|
||||
# amcl+genta susceptibility around 92.1%
|
||||
expect_equal(suppressWarnings(rsi(septic_patients$amcl,
|
||||
@ -66,6 +69,7 @@ test_that("portions works", {
|
||||
expect_error(portion_I("test", as_percent = "test"))
|
||||
expect_error(portion_S("test", minimum = "test"))
|
||||
expect_error(portion_S("test", as_percent = "test"))
|
||||
expect_error(portion_S("test", also_single_tested = "test"))
|
||||
|
||||
# check too low amount of isolates
|
||||
expect_identical(suppressWarnings(portion_R(septic_patients$amox, minimum = nrow(septic_patients) + 1)),
|
||||
|
Loading…
Reference in New Issue
Block a user