1
0
mirror of https://github.com/msberends/AMR.git synced 2025-12-23 13:50:24 +01:00

(v3.0.1.9007) fix vignette

This commit is contained in:
github-actions[bot]
2025-12-22 09:34:58 +01:00
parent f6e28ac95c
commit a5c6aa9fa8
6 changed files with 7 additions and 7 deletions

View File

@@ -22,9 +22,9 @@ body:
label: Minimal Reproducible Example (optional) label: Minimal Reproducible Example (optional)
description: Please include a short R code snippet that reproduces the problem, if possible. description: Please include a short R code snippet that reproduces the problem, if possible.
placeholder: placeholder:
e.g.\n\n e.g.
```r<br> ```r
ab_name("amoxicillin/clavulanic acid", language = "es")\n ab_name("amoxicillin/clavulanic acid", language = "es")
``` ```
validations: validations:
required: false required: false

View File

@@ -1,6 +1,6 @@
Package: AMR Package: AMR
Version: 3.0.1.9006 Version: 3.0.1.9007
Date: 2025-12-21 Date: 2025-12-22
Title: Antimicrobial Resistance Data Analysis Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR) Description: Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by data analysis and to work with microbial and antimicrobial properties by

View File

@@ -1,4 +1,4 @@
# AMR 3.0.1.9006 # AMR 3.0.1.9007
### New ### New
* Integration with the **tidymodels** framework to allow seamless use of SIR, MIC and disk data in modelling pipelines via `recipes` * Integration with the **tidymodels** framework to allow seamless use of SIR, MIC and disk data in modelling pipelines via `recipes`

Binary file not shown.

Binary file not shown.

View File

@@ -315,7 +315,7 @@ fitted <- fit(workflow_model, training_data)
# Generate predictions # Generate predictions
predictions <- predict(fitted, testing_data) %>% predictions <- predict(fitted, testing_data) %>%
bind_cols(predict(fitted, out_testing, type = "prob")) %>% # add probabilities bind_cols(predict(fitted, testing_data, type = "prob")) %>% # add probabilities
bind_cols(testing_data) bind_cols(testing_data)
# Evaluate model performance # Evaluate model performance