1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-25 00:24:41 +01:00

Merge branch 'premaster'

This commit is contained in:
dr. M.S. (Matthijs) Berends 2019-08-09 09:33:26 +02:00
commit b790030c5f
17 changed files with 173 additions and 164 deletions

View File

@ -1,53 +1,26 @@
Package: AMR
Version: 0.7.1.9030
Version: 0.7.1.9031
Date: 2019-08-08
Title: Antimicrobial Resistance Analysis
Authors@R: c(
person(
given = c("Matthijs", "S."),
family = "Berends",
email = "m.s.berends@umcg.nl",
role = c("aut", "cre"),
comment = c(ORCID = "0000-0001-7620-1800")),
person(
given = c("Christian", "F."),
family = "Luz",
email = "c.f.luz@umcg.nl",
role = "aut",
comment = c(ORCID = "0000-0001-5809-5995")),
person(
given = "Corinna",
family = "Glasner",
email = "c.glasner@umcg.nl",
role = c("aut", "ths"),
comment = c(ORCID = "0000-0003-1241-1328")),
person(
given = c("Alex", "W."),
family = "Friedrich",
email = "alex.friedrich@umcg.nl",
role = c("aut", "ths"),
comment = c(ORCID = "0000-0003-4881-038X")),
person(
given = c("Bhanu", "N.", "M."),
family = "Sinha",
email = "b.sinha@umcg.nl",
role = c("aut", "ths"),
comment = c(ORCID = "0000-0003-1634-0010")),
person(
given = c("Erwin", "E.", "A."),
family = "Hassing",
email = "e.hassing@certe.nl",
role = "ctb"),
person(
given = c("Bart", "C."),
family = "Meijer",
email = "b.meijerg@certe.nl",
role = "ctb"),
person(
given = "Dennis",
family = "Souverein",
email = "d.souvereing@streeklabhaarlem.nl",
role = "ctb"))
person(role = c("aut", "cre"),
family = "Berends", given = c("Matthijs", "S."), email = "m.s.berends@umcg.nl", comment = c(ORCID = "0000-0001-7620-1800")),
person(role = "aut",
family = "Luz", given = c("Christian", "F."), email = "c.f.luz@umcg.nl", comment = c(ORCID = "0000-0001-5809-5995")),
person(role = c("aut", "ths"),
family = "Glasner", given = "Corinna", email = "c.glasner@umcg.nl", comment = c(ORCID = "0000-0003-1241-1328")),
person(role = c("aut", "ths"),
family = "Friedrich", given = c("Alex", "W."), email = "alex.friedrich@umcg.nl", comment = c(ORCID = "0000-0003-4881-038X")),
person(role = c("aut", "ths"),
family = "Sinha", given = c("Bhanu", "N.", "M."), email = "b.sinha@umcg.nl", comment = c(ORCID = "0000-0003-1634-0010")),
person(role = "ctb",
family = "Hassing", given = c("Erwin", "E.", "A."), email = "e.hassing@certe.nl"),
person(role = "ctb",
family = "Lenglet", given = "Annick", email = "annick.lenglet@amsterdam.msf.org"),
person(role = "ctb",
family = "Meijer", given = c("Bart", "C."), email = "b.meijerg@certe.nl"),
person(role = "ctb",
family = "Souverein", given = "Dennis", email = "d.souvereing@streeklabhaarlem.nl"))
Description: Functions to simplify the analysis and prediction of Antimicrobial
Resistance (AMR) and to work with microbial and antimicrobial properties by
using evidence-based methods.

View File

@ -1,7 +1,8 @@
# AMR 0.7.1.9030
# AMR 0.7.1.9031
### Breaking
* Function `freq()` has moved to a new package, [`clean`](https://github.com/msberends/clean) ([CRAN link](https://cran.r-project.org/package=clean)). Creating frequency tables is actually not the scope of this package (never was) and this function has matured a lot over the last two years. Therefore, a new package was created for data cleaning and checking and it perfectly fits the `freq()` function. The [`clean`](https://github.com/msberends/clean) package is available on CRAN and will be installed automatically when updating the `AMR` package, that now imports it. In a later stage, the `skewness()` and `kurtosis()` functions will be moved to the `clean` package too.
* Determination of first isolates now **excludes** all 'unknown' microorganisms at default, i.e. microbial code `"UNKNOWN"`. They can be included with the new parameter `include_unknown`: `first_isolates(..., include_unknown = TRUE)`. For WHONET users, this means that all records with organism code `"con"` (*contamination*) will be excluded at default, since `as.mo("con") = "UNKNOWN"`.
### New
* Additional way to calculate co-resistance, i.e. when using multiple antibiotics as input for `portion_*` functions or `count_*` functions. This can be used to determine the empiric susceptibily of a combination therapy. A new parameter `only_all_tested` (**which defaults to `FALSE`**) replaces the old `also_single_tested` and can be used to select one of the two methods to count isolates and calculate portions. The difference can be seen in this example table (which is also on the `portion` and `count` help pages), where the %SI is being determined:
@ -36,7 +37,7 @@
### Changed
* Added more informative errors and warnings to `eucast_rules()`
* Fixed a bug in `eucast_rules()` where antibiotic columns would be read as lists instead of characters
* Fixed a bug in `eucast_rules()` for *Yersinia pseudotuberculosis*
* Added tibble printing support for classes `rsi`, `mic`, `ab` and `mo`. When using tibbles containing antibiotic columns, values `S` will print in green, values `I` will print in yellow and values `R` will print in red:
```r
(run this on your own console, as this page does not support colour printing)
@ -65,7 +66,7 @@
* Using factors as input for `eucast_rules()` now adds missing factors levels when the function changes antibiotic results
#### Other
* Added Dr Bart Meijer and Dr Dennis Souverein as contributors
* Added Dr Bart Meijer, Dr Dennis Souverein and Annick Lenglet as contributors
# AMR 0.7.1

2
R/ab.R
View File

@ -297,6 +297,6 @@ type_sum.ab <- function(x) {
#' @export
pillar_shaft.ab <- function(x, ...) {
out <- format(x)
out[is.na(x)] <- NA
out[is.na(x)] <- pillar::style_na("NA")
pillar::new_pillar_shaft_simple(out, align = "left", min_width = 4)
}

View File

@ -30,7 +30,7 @@
#' @param col_specimen column name of the specimen type or group
#' @param col_icu column name of the logicals (\code{TRUE}/\code{FALSE}) whether a ward or department is an Intensive Care Unit (ICU)
#' @param col_keyantibiotics column name of the key antibiotics to determine first \emph{weighted} isolates, see \code{\link{key_antibiotics}}. Defaults to the first column that starts with 'key' followed by 'ab' or 'antibiotics' (case insensitive). Use \code{col_keyantibiotics = FALSE} to prevent this.
#' @param episode_days episode in days after which a genus/species combination will be determined as 'first isolate' again
#' @param episode_days episode in days after which a genus/species combination will be determined as 'first isolate' again. The default of 365 days is based on the guideline by CLSI, see Source.
#' @param testcodes_exclude character vector with test codes that should be excluded (case-insensitive)
#' @param icu_exclude logical whether ICU isolates should be excluded (rows with value \code{TRUE} in column \code{col_icu})
#' @param specimen_group value in column \code{col_specimen} to filter on
@ -38,10 +38,13 @@
#' @param ignore_I logical to determine whether antibiotic interpretations with \code{"I"} will be ignored when \code{type = "keyantibiotics"}, see Details
#' @param points_threshold points until the comparison of key antibiotics will lead to inclusion of an isolate when \code{type = "points"}, see Details
#' @param info print progress
#' @param include_unknown logical to determine whether 'unknown' microorganisms should be included too, i.e. microbial code \code{"UNKNOWN"}, which defaults to \code{FALSE}. For WHONET users, this means that all records with organism code \code{"con"} (\emph{contamination}) will be excluded at default. Isolates with a microbial ID of \code{NA} will always be excluded as first isolate.
#' @param ... parameters passed on to the \code{first_isolate} function
#' @details \strong{WHY THIS IS SO IMPORTANT} \cr
#' To conduct an analysis of antimicrobial resistance, you should only include the first isolate of every patient per episode \href{https://www.ncbi.nlm.nih.gov/pubmed/17304462}{[1]}. If you would not do this, you could easily get an overestimate or underestimate of the resistance of an antibiotic. Imagine that a patient was admitted with an MRSA and that it was found in 5 different blood cultures the following week. The resistance percentage of oxacillin of all \emph{S. aureus} isolates would be overestimated, because you included this MRSA more than once. It would be \href{https://en.wikipedia.org/wiki/Selection_bias}{selection bias}.
#'
#' All isolates with a microbial ID of \code{NA} will be excluded as first isolate.
#'
#' The functions \code{filter_first_isolate} and \code{filter_first_weighted_isolate} are helper functions to quickly filter on first isolates. The function \code{filter_first_isolate} is essentially equal to:
#' \preformatted{
#' x \%>\%
@ -170,6 +173,7 @@ first_isolate <- function(x,
ignore_I = TRUE,
points_threshold = 2,
info = TRUE,
include_unknown = FALSE,
...) {
if (!is.data.frame(x)) {
@ -215,7 +219,7 @@ first_isolate <- function(x,
# WHONET support
x <- x %>% mutate(patient_id = paste(`First name`, `Last name`, Sex))
col_patient_id <- "patient_id"
message(blue(paste0("NOTE: Using combined columns ", bold("`First name`, `Last name` and `Sex`"), " as input for `col_patient_id`.")))
message(blue(paste0("NOTE: Using combined columns `", bold("First name"), "`, `", bold("Last name"), "` and `", bold("Sex"), "` as input for `col_patient_id`.")))
} else {
col_patient_id <- search_type_in_df(x = x, type = "patient_id")
}
@ -260,15 +264,14 @@ first_isolate <- function(x,
check_columns_existance(col_icu)
check_columns_existance(col_keyantibiotics)
# join to microorganisms data set
# create new dataframe with original row index
x <- x %>%
mutate_at(vars(col_mo), as.mo) %>%
left_join_microorganisms(by = col_mo) %>%
# empty species will lead to first = FALSE, so put in text there if genus is available
mutate(species = ifelse(!is.na(genus) & species == "", "species", species))
col_genus <- "genus"
col_species <- "species"
mutate(newvar_row_index = 1:nrow(x),
newvar_mo = x %>% pull(col_mo) %>% as.mo(),
newvar_genus_species = paste(mo_genus(newvar_mo), mo_species(newvar_mo)),
newvar_date = x %>% pull(col_date),
newvar_patient_id = x %>% pull(col_patient_id))
if (is.null(col_testcode)) {
testcodes_exclude <- NULL
}
@ -303,16 +306,7 @@ first_isolate <- function(x,
testcodes_exclude <- ''
}
# create new dataframe with original row index and right sorting
x <- x %>%
mutate(first_isolate_row_index = 1:nrow(x),
date_lab = x %>% pull(col_date),
patient_id = x %>% pull(col_patient_id),
species = x %>% pull(col_species),
genus = x %>% pull(col_genus)) %>%
mutate(species = if_else(is.na(species) | species == "(no MO)", "", species),
genus = if_else(is.na(genus) | genus == "(no MO)", "", genus))
# arrange data to the right sorting
if (is.null(specimen_group)) {
# not filtering on specimen
if (icu_exclude == FALSE) {
@ -320,10 +314,9 @@ first_isolate <- function(x,
cat('[Criterion] Included isolates from ICU.\n')
}
x <- x %>%
arrange_at(c(col_patient_id,
col_genus,
col_species,
col_date))
arrange(newvar_patient_id,
newvar_genus_species,
newvar_date)
row.start <- 1
row.end <- nrow(x)
} else {
@ -332,10 +325,9 @@ first_isolate <- function(x,
}
x <- x %>%
arrange_at(c(col_icu,
col_patient_id,
col_genus,
col_species,
col_date))
"newvar_patient_id",
"newvar_genus_species",
"newvar_date"))
suppressWarnings(
row.start <- which(x %>% pull(col_icu) == FALSE) %>% min(na.rm = TRUE)
@ -353,10 +345,9 @@ first_isolate <- function(x,
}
x <- x %>%
arrange_at(c(col_specimen,
col_patient_id,
col_genus,
col_species,
col_date))
"newvar_patient_id",
"newvar_genus_species",
"newvar_date"))
suppressWarnings(
row.start <- which(x %>% pull(col_specimen) == specimen_group) %>% min(na.rm = TRUE)
)
@ -370,10 +361,9 @@ first_isolate <- function(x,
x <- x %>%
arrange_at(c(col_icu,
col_specimen,
col_patient_id,
col_genus,
col_species,
col_date))
"newvar_patient_id",
"newvar_genus_species",
"newvar_date"))
suppressWarnings(
row.start <- which(x %>% pull(col_specimen) == specimen_group
& x %>% pull(col_icu) == FALSE) %>% min(na.rm = TRUE)
@ -386,27 +376,28 @@ first_isolate <- function(x,
}
# no isolates found
if (abs(row.start) == Inf | abs(row.end) == Inf) {
if (info == TRUE) {
message(paste("=> Found", bold("no isolates")))
}
# NAs where genus is unavailable
return(x %>%
mutate(real_first_isolate = if_else(genus == '', NA, FALSE)) %>%
pull(real_first_isolate)
)
return(rep(FALSE, nrow(x)))
}
# did find some isolates - add new index numbers of rows
x <- x %>% mutate(newvar_row_index_sorted = 1:nrow(.))
# suppress warnings because dplyr wants us to use library(dplyr) when using filter(row_number())
suppressWarnings(
scope.size <- x %>%
filter(
row_number() %>% between(row.start,
row.end),
genus != "",
species != "") %>%
nrow()
)
#suppressWarnings(
scope.size <- row.end - row.start + 1
# x %>%
# filter(
# row_number() %>% between(row.start,
# row.end),
# newvar_genus != "",
# newvar_species != "") %>%
# nrow()
# )
identify_new_year = function(x, episode_days) {
# I asked on StackOverflow:
@ -432,15 +423,13 @@ first_isolate <- function(x,
# Analysis of first isolate ----
all_first <- x %>%
mutate(other_pat_or_mo = if_else(patient_id == lag(patient_id)
& genus == lag(genus)
& species == lag(species),
mutate(other_pat_or_mo = if_else(newvar_patient_id == lag(newvar_patient_id)
& newvar_genus_species == lag(newvar_genus_species),
FALSE,
TRUE)) %>%
group_by_at(vars(patient_id,
genus,
species)) %>%
mutate(more_than_episode_ago = identify_new_year(x = date_lab,
group_by(newvar_patient_id,
newvar_genus_species) %>%
mutate(more_than_episode_ago = identify_new_year(x = newvar_date,
episode_days = episode_days)) %>%
ungroup()
@ -461,41 +450,36 @@ first_isolate <- function(x,
}
}
type_param <- type
# suppress warnings because dplyr want us to use library(dplyr) when using filter(row_number())
suppressWarnings(
all_first <- all_first %>%
mutate(key_ab_lag = lag(key_ab)) %>%
mutate(key_ab_other = !key_antibiotics_equal(y = key_ab,
z = key_ab_lag,
type = type_param,
ignore_I = ignore_I,
points_threshold = points_threshold,
info = info)) %>%
mutate(
real_first_isolate =
if_else(
between(row_number(), row.start, row.end)
& genus != ""
& species != ""
& (other_pat_or_mo | more_than_episode_ago | key_ab_other),
TRUE,
FALSE))
)
all_first <- all_first %>%
mutate(key_ab_lag = lag(key_ab)) %>%
mutate(key_ab_other = !key_antibiotics_equal(y = key_ab,
z = key_ab_lag,
type = type_param,
ignore_I = ignore_I,
points_threshold = points_threshold,
info = info)) %>%
mutate(
real_first_isolate =
if_else(
newvar_row_index_sorted %>% between(row.start, row.end)
& newvar_genus_species != ""
& (other_pat_or_mo | more_than_episode_ago | key_ab_other),
TRUE,
FALSE))
} else {
# no key antibiotics
# suppress warnings because dplyr want us to use library(dplyr) when using filter(row_number())
suppressWarnings(
all_first <- all_first %>%
mutate(
all_first <- all_first %>%
mutate(
real_first_isolate =
if_else(
between(row_number(), row.start, row.end)
& genus != ""
& species != ""
newvar_row_index_sorted %>% between(row.start, row.end)
& newvar_genus_species != ""
& (other_pat_or_mo | more_than_episode_ago),
TRUE,
FALSE))
)
}
# first one as TRUE
@ -507,18 +491,39 @@ first_isolate <- function(x,
if (icu_exclude == TRUE) {
all_first[which(all_first[, col_icu] == TRUE), 'real_first_isolate'] <- FALSE
}
# NAs where genus is unavailable
decimal.mark <- getOption("OutDec")
big.mark <- ifelse(decimal.mark != ",", ",", ".")
# handle empty microorganisms
if (any(all_first$newvar_mo == "UNKNOWN", na.rm = TRUE)) {
if (include_unknown == TRUE) {
message(blue(paste0("NOTE: Included ", format(sum(all_first$newvar_mo == "UNKNOWN"),
decimal.mark = decimal.mark, big.mark = big.mark),
' isolates with a microbial ID "UNKNOWN" (column `', bold(col_mo), '`).')))
} else {
message(blue(paste0("NOTE: Excluded ", format(sum(all_first$newvar_mo == "UNKNOWN"),
decimal.mark = decimal.mark, big.mark = big.mark),
' isolates with a microbial ID "UNKNOWN" (column `', bold(col_mo), '`).')))
}
}
all_first[which(all_first$newvar_mo == "UNKNOWN"), 'real_first_isolate'] <- include_unknown
# exclude all NAs
if (any(is.na(all_first$newvar_mo))) {
message(blue(paste0("NOTE: Excluded ", format(sum(is.na(all_first$newvar_mo)),
decimal.mark = decimal.mark, big.mark = big.mark),
' isolates with a microbial ID "NA" (column `', bold(col_mo), '`).')))
}
all_first[which(is.na(all_first$newvar_mo)), 'real_first_isolate'] <- FALSE
# arrange back according to original sorting again
all_first <- all_first %>%
mutate(real_first_isolate = if_else(genus %in% c('', '(no MO)', NA), NA, real_first_isolate))
all_first <- all_first %>%
arrange(first_isolate_row_index) %>%
arrange(newvar_row_index) %>%
pull(real_first_isolate)
if (info == TRUE) {
decimal.mark <- getOption("OutDec")
big.mark <- ifelse(decimal.mark != ",", ",", ".")
n_found <- base::sum(all_first, na.rm = TRUE)
p_found_total <- percent(n_found / nrow(x), force_zero = TRUE)
p_found_scope <- percent(n_found / scope.size, force_zero = TRUE)

2
R/mo.R
View File

@ -1520,7 +1520,7 @@ type_sum.mo <- function(x) {
#' @export
pillar_shaft.mo <- function(x, ...) {
out <- format(x)
out[is.na(x)] <- NA
out[is.na(x)] <- pillar::style_na("NA")
pillar::new_pillar_shaft_simple(out, align = "left", min_width = 11)
}

View File

@ -78,7 +78,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">0.7.1.9030</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">0.7.1.9031</span>
</span>
</div>

View File

@ -40,7 +40,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">0.7.1.9029</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">0.7.1.9031</span>
</span>
</div>

View File

@ -78,7 +78,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">0.7.1.9030</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">0.7.1.9031</span>
</span>
</div>

View File

@ -40,7 +40,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">0.7.1.9029</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">0.7.1.9031</span>
</span>
</div>

View File

@ -78,7 +78,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">0.7.1.9030</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">0.7.1.9031</span>
</span>
</div>

View File

@ -42,7 +42,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">0.7.1.9030</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">0.7.1.9031</span>
</span>
</div>

View File

@ -78,7 +78,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">0.7.1.9030</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">0.7.1.9031</span>
</span>
</div>
@ -225,15 +225,16 @@
</div>
<div id="amr-0-7-1-9030" class="section level1">
<div id="amr-0-7-1-9031" class="section level1">
<h1 class="page-header">
<a href="#amr-0-7-1-9030" class="anchor"></a>AMR 0.7.1.9030<small> Unreleased </small>
<a href="#amr-0-7-1-9031" class="anchor"></a>AMR 0.7.1.9031<small> Unreleased </small>
</h1>
<div id="breaking" class="section level3">
<h3 class="hasAnchor">
<a href="#breaking" class="anchor"></a>Breaking</h3>
<ul>
<li>Function <code>freq()</code> has moved to a new package, <a href="https://github.com/msberends/clean"><code>clean</code></a> (<a href="https://cran.r-project.org/package=clean">CRAN link</a>). Creating frequency tables is actually not the scope of this package (never was) and this function has matured a lot over the last two years. Therefore, a new package was created for data cleaning and checking and it perfectly fits the <code>freq()</code> function. The <a href="https://github.com/msberends/clean"><code>clean</code></a> package is available on CRAN and will be installed automatically when updating the <code>AMR</code> package, that now imports it. In a later stage, the <code><a href="../reference/skewness.html">skewness()</a></code> and <code><a href="../reference/kurtosis.html">kurtosis()</a></code> functions will be moved to the <code>clean</code> package too.</li>
<li>Selection of first isolates now <strong>excludes</strong> all unknown microorganisms at default, i.e. microbial codes <code>NA</code> and <code>"UNKNOWN"</code>. They can be included with the new parameter <code>include_unknown</code>: <code>first_isolates(..., include_unknown = TRUE)</code>. For WHONET users, this means that all records with microbial codes <code>"xxx"</code> (<em>no growth</em>) and <code>"con"</code> (<em>contamination</em>) will be excluded at default.</li>
</ul>
</div>
<div id="new" class="section level3">
@ -275,7 +276,8 @@
<ul>
<li>Added more informative errors and warnings to <code><a href="../reference/eucast_rules.html">eucast_rules()</a></code>
</li>
<li>Fixed a bug in <code><a href="../reference/eucast_rules.html">eucast_rules()</a></code> where antibiotic columns would be read as lists instead of characters</li>
<li>Fixed a bug in <code><a href="../reference/eucast_rules.html">eucast_rules()</a></code> for <em>Yersinia pseudotuberculosis</em>
</li>
<li>
<p>Added tibble printing support for classes <code>rsi</code>, <code>mic</code>, <code>ab</code> and <code>mo</code>. When using tibbles containing antibiotic columns, values <code>S</code> will print in green, values <code>I</code> will print in yellow and values <code>R</code> will print in red:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb2-1" data-line-number="1">(run this on your own console, as this page does not support colour printing)</a>
@ -1226,7 +1228,7 @@ Using <code><a href="../reference/as.mo.html">as.mo(..., allow_uncertain = 3)</a
<div id="tocnav">
<h2>Contents</h2>
<ul class="nav nav-pills nav-stacked">
<li><a href="#amr-0-7-1-9030">0.7.1.9030</a></li>
<li><a href="#amr-0-7-1-9031">0.7.1.9031</a></li>
<li><a href="#amr-0-7-1">0.7.1</a></li>
<li><a href="#amr-0-7-0">0.7.0</a></li>
<li><a href="#amr-0-6-1">0.6.1</a></li>

View File

@ -80,7 +80,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">0.7.1.9029</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">0.7.1.9031</span>
</span>
</div>
@ -239,7 +239,7 @@
<span class='kw'>col_icu</span> <span class='kw'>=</span> <span class='kw'>NULL</span>, <span class='kw'>col_keyantibiotics</span> <span class='kw'>=</span> <span class='kw'>NULL</span>, <span class='kw'>episode_days</span> <span class='kw'>=</span> <span class='fl'>365</span>,
<span class='kw'>testcodes_exclude</span> <span class='kw'>=</span> <span class='kw'>NULL</span>, <span class='kw'>icu_exclude</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>,
<span class='kw'>specimen_group</span> <span class='kw'>=</span> <span class='kw'>NULL</span>, <span class='kw'>type</span> <span class='kw'>=</span> <span class='st'>"keyantibiotics"</span>, <span class='kw'>ignore_I</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>,
<span class='kw'>points_threshold</span> <span class='kw'>=</span> <span class='fl'>2</span>, <span class='kw'>info</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, <span class='no'>...</span>)
<span class='kw'>points_threshold</span> <span class='kw'>=</span> <span class='fl'>2</span>, <span class='kw'>info</span> <span class='kw'>=</span> <span class='fl'>TRUE</span>, <span class='kw'>include_unknown</span> <span class='kw'>=</span> <span class='fl'>FALSE</span>, <span class='no'>...</span>)
<span class='fu'>filter_first_isolate</span>(<span class='no'>x</span>, <span class='kw'>col_date</span> <span class='kw'>=</span> <span class='kw'>NULL</span>, <span class='kw'>col_patient_id</span> <span class='kw'>=</span> <span class='kw'>NULL</span>,
<span class='kw'>col_mo</span> <span class='kw'>=</span> <span class='kw'>NULL</span>, <span class='no'>...</span>)
@ -285,7 +285,7 @@
</tr>
<tr>
<th>episode_days</th>
<td><p>episode in days after which a genus/species combination will be determined as 'first isolate' again</p></td>
<td><p>episode in days after which a genus/species combination will be determined as 'first isolate' again. The default of 365 days is based on the guideline by CLSI, see Source.</p></td>
</tr>
<tr>
<th>testcodes_exclude</th>
@ -315,6 +315,10 @@
<th>info</th>
<td><p>print progress</p></td>
</tr>
<tr>
<th>include_unknown</th>
<td><p>logical to determine whether 'unknown' microorganisms should be included too, i.e. microbial code <code>"UNKNOWN"</code>, which defaults to <code>FALSE</code>. For WHONET users, this means that all records with organism code <code>"con"</code> (<em>contamination</em>) will be excluded at default.</p></td>
</tr>
<tr>
<th>...</th>
<td><p>parameters passed on to the <code>first_isolate</code> function</p></td>

View File

@ -78,7 +78,7 @@
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">AMR (for R)</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">0.7.1.9030</span>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">0.7.1.9031</span>
</span>
</div>

View File

@ -10,15 +10,15 @@
# git stash --quiet
# go to master
git add .
git commit -a -m "website update" --quiet
git checkout master --quiet
echo "• changed branch to master"
# import everything from premaster
git merge premaster --quiet
# and send it to git
git push --quiet
echo "• pushed changes to master"
# return to premaster
git checkout premaster --quiet
echo "• changed branch back to premaster"

View File

@ -14,7 +14,7 @@ first_isolate(x, col_date = NULL, col_patient_id = NULL,
col_icu = NULL, col_keyantibiotics = NULL, episode_days = 365,
testcodes_exclude = NULL, icu_exclude = FALSE,
specimen_group = NULL, type = "keyantibiotics", ignore_I = TRUE,
points_threshold = 2, info = TRUE, ...)
points_threshold = 2, info = TRUE, include_unknown = FALSE, ...)
filter_first_isolate(x, col_date = NULL, col_patient_id = NULL,
col_mo = NULL, ...)
@ -40,7 +40,7 @@ filter_first_weighted_isolate(x, col_date = NULL,
\item{col_keyantibiotics}{column name of the key antibiotics to determine first \emph{weighted} isolates, see \code{\link{key_antibiotics}}. Defaults to the first column that starts with 'key' followed by 'ab' or 'antibiotics' (case insensitive). Use \code{col_keyantibiotics = FALSE} to prevent this.}
\item{episode_days}{episode in days after which a genus/species combination will be determined as 'first isolate' again}
\item{episode_days}{episode in days after which a genus/species combination will be determined as 'first isolate' again. The default of 365 days is based on the guideline by CLSI, see Source.}
\item{testcodes_exclude}{character vector with test codes that should be excluded (case-insensitive)}
@ -56,6 +56,8 @@ filter_first_weighted_isolate(x, col_date = NULL,
\item{info}{print progress}
\item{include_unknown}{logical to determine whether 'unknown' microorganisms should be included too, i.e. microbial code \code{"UNKNOWN"}, which defaults to \code{FALSE}. For WHONET users, this means that all records with organism code \code{"con"} (\emph{contamination}) will be excluded at default. Isolates with a microbial ID of \code{NA} will always be excluded as first isolate.}
\item{...}{parameters passed on to the \code{first_isolate} function}
}
\value{
@ -68,6 +70,8 @@ Determine first (weighted) isolates of all microorganisms of every patient per e
\strong{WHY THIS IS SO IMPORTANT} \cr
To conduct an analysis of antimicrobial resistance, you should only include the first isolate of every patient per episode \href{https://www.ncbi.nlm.nih.gov/pubmed/17304462}{[1]}. If you would not do this, you could easily get an overestimate or underestimate of the resistance of an antibiotic. Imagine that a patient was admitted with an MRSA and that it was found in 5 different blood cultures the following week. The resistance percentage of oxacillin of all \emph{S. aureus} isolates would be overestimated, because you included this MRSA more than once. It would be \href{https://en.wikipedia.org/wiki/Selection_bias}{selection bias}.
All isolates with a microbial ID of \code{NA} will be excluded as first isolate.
The functions \code{filter_first_isolate} and \code{filter_first_weighted_isolate} are helper functions to quickly filter on first isolates. The function \code{filter_first_isolate} is essentially equal to:
\preformatted{
x \%>\%

View File

@ -187,5 +187,25 @@ test_that("first isolates work", {
info = TRUE),
na.rm = TRUE),
1322)
# unknown MOs
expect_equal(septic_patients %>%
mutate(mo = ifelse(mo == "B_ESCHR_COL", "UNKNOWN", mo)) %>%
mutate(first = first_isolate(., include_unknown = FALSE)) %>%
.$first %>%
sum(),
1062)
expect_equal(septic_patients %>%
mutate(mo = ifelse(mo == "B_ESCHR_COL", "UNKNOWN", mo)) %>%
mutate(first = first_isolate(., include_unknown = TRUE)) %>%
.$first %>%
sum(),
1529)
expect_equal(septic_patients %>%
mutate(mo = ifelse(mo == "B_ESCHR_COL", NA, mo)) %>%
mutate(first = first_isolate(.)) %>%
.$first %>%
sum(),
1062)
})