1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-24 18:24:35 +01:00

algorithm improvement

This commit is contained in:
dr. M.S. (Matthijs) Berends 2018-09-14 10:31:21 +02:00
parent d049ec9e69
commit cf5711fb0b
4 changed files with 91 additions and 89 deletions

View File

@ -26,8 +26,12 @@ jobs:
warnings_are_errors: false
matrix:
allow_failures:
- os: osx
# - r: devel
- r: 3.2
os: osx
- r: 3.3
os: osx
- r: 3.4
os: osx
r_packages: covr
cache: packages
cran: https://cran.rstudio.com

18
NEWS.md
View File

@ -4,7 +4,23 @@
* Functions `count_R`, `count_IR`, `count_I`, `count_SI` and `count_S` to selectively count resistant or susceptible isolates
* Extra function `count_df` (which works like `portion_df`) to get all counts of S, I and R of a data set with antibiotic columns, with support for grouped variables
* Function `is.rsi.eligible` to check for columns that have valid antimicrobial results, but do not have the `rsi` class yet. Transform the columns of your raw data with: `data %>% mutate_if(is.rsi.eligible, as.rsi)`
* Functions `as.mo` and `is.mo` as replacements for `as.bactid` and `is.bactid` (since the `microoganisms` data set not only contains bacteria). These last two functions are deprecated and will be removed in a future release.
* Functions `as.mo` and `is.mo` as replacements for `as.bactid` and `is.bactid` (since the `microoganisms` data set not only contains bacteria). These last two functions are deprecated and will be removed in a future release. The `as.mo` function determines microbial IDs using Artificial Intelligence (AI):
```r
as.mo("E. coli")
# [1] ESCCOL
as.mo("MRSA")
# [1] STAAUR
as.mo("S group A")
# [1] STCGRA
```
And with great speed too - on a quite regular Linux server from 2007 it takes us 0.009 seconds to transform 25,000 items:
```r
thousands_of_E_colis <- rep("E. coli", 25000)
microbenchmark::microbenchmark(as.mo(thousands_of_E_colis), unit = "s")
# Unit: seconds
# min median max neval
# 0.00861352 0.008774335 0.01952958 100
```
* Renamed all previous references to `bactid` to `mo`, like:
* Column names inputs of `EUCAST_rules`, `first_isolate` and `key_antibiotics`
* Column names of datasets `microorganisms` and `septic_patients`

View File

@ -42,6 +42,36 @@ guess_bactid <- function(...) {
guess_mo(...)
}
#' @exportMethod print.bactid
#' @export
#' @noRd
print.bactid <- function(x, ...) {
cat("Class 'bactid'\n")
print.default(as.character(x), quote = FALSE)
}
#' @exportMethod as.data.frame.bactid
#' @export
#' @noRd
as.data.frame.bactid <- function (x, ...) {
# same as as.data.frame.character but with removed stringsAsFactors
nm <- paste(deparse(substitute(x), width.cutoff = 500L),
collapse = " ")
if (!"nm" %in% names(list(...))) {
as.data.frame.vector(x, ..., nm = nm)
} else {
as.data.frame.vector(x, ...)
}
}
#' @exportMethod pull.bactid
#' @export
#' @importFrom dplyr pull
#' @noRd
pull.bactid <- function(.data, ...) {
pull(as.data.frame(.data), ...)
}
#' @rdname AMR-deprecated
#' @export
ratio <- function(x, ratio) {
@ -53,13 +83,13 @@ ratio <- function(x, ratio) {
if (length(ratio) == 1) {
if (ratio %like% '^([0-9]+([.][0-9]+)?[-,:])+[0-9]+([.][0-9]+)?$') {
# support for "1:2:1", "1-2-1", "1,2,1" and even "1.75:2:1.5"
ratio <- ratio %>% base::strsplit("[-,:]") %>% base::unlist() %>% base::as.double()
ratio <- ratio %>% strsplit("[-,:]") %>% unlist() %>% as.double()
} else {
stop('Invalid `ratio`: ', ratio, '.')
}
}
if (length(x) != length(ratio)) {
if (length(x) != 1 & length(x) != length(ratio)) {
stop('`x` and `ratio` must be of same size.')
}
base::sum(x, na.rm = TRUE) * (ratio / base::sum(ratio, na.rm = TRUE))
sum(x, na.rm = TRUE) * (ratio / sum(ratio, na.rm = TRUE))
}

118
R/mo.R
View File

@ -158,56 +158,23 @@ as.mo <- function(x, Becker = FALSE, Lancefield = FALSE) {
x[i] <- NA
next
}
if (x_backup[i] %in% AMR::microorganisms$mo) {
if (toupper(x_backup[i]) %in% AMR::microorganisms$mo) {
# is already a valid MO code
x[i] <- x_backup[i]
x[i] <- toupper(x_backup[i])
next
}
if (x_trimmed[i] %in% AMR::microorganisms$mo) {
if (toupper(x_trimmed[i]) %in% AMR::microorganisms$mo) {
# is already a valid MO code
x[i] <- x_trimmed[i]
x[i] <- toupper(x_trimmed[i])
next
}
if (x_backup[i] %in% AMR::microorganisms$fullname) {
if (tolower(x_backup[i]) %in% tolower(AMR::microorganisms$fullname)) {
# is exact match in fullname
x[i] <- AMR::microorganisms[which(AMR::microorganisms$fullname == x_backup[i]), ]$mo[1]
x[i] <- AMR::microorganisms[which(AMR::microorganisms$fullname == x_backup[i]), ]$mo[1L]
next
}
if (tolower(x[i]) == '^e.*coli$') {
# avoid detection of Entamoeba coli in case of E. coli
x[i] <- 'ESCCOL'
next
}
if (tolower(x[i]) == '^h.*influenzae$') {
# avoid detection of Haematobacter influenzae in case of H. influenzae
x[i] <- 'HAEINF'
next
}
if (tolower(x[i]) == '^c.*difficile$') {
# avoid detection of Catabacter difficile in case of C. difficile
x[i] <- 'CLODIF'
next
}
if (tolower(x[i]) == '^st.*au$'
| tolower(x[i]) == '^stau$'
| tolower(x[i]) == '^staaur$') {
# avoid detection of Staphylococcus auricularis in case of S. aureus
x[i] <- 'STAAUR'
next
}
if (tolower(x[i]) == '^p.*aer$') {
# avoid detection of Pasteurella aerogenes in case of Pseudomonas aeruginosa
x[i] <- 'PSEAER'
next
}
if (x_backup[i] %like% '^l.*pneum.*' & !x_backup[i] %like% '^l.*non.*pneum.*') {
# avoid detection of Legionella non pneumophila in case of Legionella pneumophila
x[i] <- 'LEGPNE'
next
}
# CoNS and CoPS in different languages (support for German, Dutch, Spanish, Portuguese)
# CoNS/CoPS in different languages (support for German, Dutch, Spanish, Portuguese) ----
if (tolower(x[i]) %like% '[ck]oagulas[ea] negatie?[vf]'
| tolower(x_trimmed[i]) %like% '[ck]oagulas[ea] negatie?[vf]'
| tolower(x[i]) %like% '[ck]o?ns[^a-z]?$') {
@ -223,7 +190,7 @@ as.mo <- function(x, Becker = FALSE, Lancefield = FALSE) {
next
}
# translate known trivial abbreviations to genus+species
# translate known trivial abbreviations to genus + species ----
if (!is.na(x_trimmed[i])) {
if (toupper(x_trimmed[i]) == 'MRSA'
| toupper(x_trimmed[i]) == 'VISA'
@ -255,33 +222,33 @@ as.mo <- function(x, Becker = FALSE, Lancefield = FALSE) {
}
}
# try any match keeping spaces
# try any match keeping spaces ----
found <- MOs[which(MOs$fullname %like% x_withspaces[i]),]$mo
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# try the same, now based on genus + species
# try the same, now based on genus + species ----
found <- MOs[which(paste(MOs$genus, MOs$species) %like% x_withspaces[i]),]$mo
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# try any match keeping spaces, not ending with $
# try any match keeping spaces, not ending with $ ----
found <- MOs[which(MOs$fullname %like% x_withspaces_start[i]),]$mo
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# try any match diregarding spaces
# try any match diregarding spaces ----
found <- MOs[which(MOs$fullname %like% x[i]),]$mo
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# try exact match of only genus, with 'species' attached
# try exact match of only genus, with 'species' attached ----
# (this prevents Streptococcus from becoming Peptostreptococcus, since "p" < "s")
found <- MOs[which(MOs$fullname == x_species[i]),]$mo
if (length(found) > 0) {
@ -289,28 +256,29 @@ as.mo <- function(x, Becker = FALSE, Lancefield = FALSE) {
next
}
# try any match of only genus, with 'species' attached
# try any match of only genus, with 'species' attached ----
found <- MOs[which(MOs$fullname %like% x_species[i]),]$mo
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# try fullname without start and stop regex, to also find subspecies, like "K. pneu rhino"
# try fullname without start and stop regex, to also find subspecies ----
# like "K. pneu rhino" -> "Klebsiella pneumoniae (rhinoscleromatis)" = KLEPNERH
found <- MOs[which(gsub("[\\(\\)]", "", MOs$fullname) %like% x_withspaces_all[i]),]$mo
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# search for GLIMS code
# search for GLIMS code ----
found <- AMR::microorganisms.umcg[which(toupper(AMR::microorganisms.umcg$umcg) == toupper(x_trimmed[i])),]$mo
if (length(found) > 0) {
x[i] <- found[1L]
next
}
# try splitting of characters and then find ID
# try splitting of characters and then find ID ----
# like esco = E. coli, klpn = K. pneumoniae, stau = S. aureus
x_split <- x
x_length <- nchar(x_trimmed[i])
@ -323,7 +291,7 @@ as.mo <- function(x, Becker = FALSE, Lancefield = FALSE) {
next
}
# try any match with text before and after original search string
# try any match with text before and after original search string ----
# so "negative rods" will be "GNR"
if (x_trimmed[i] %like% "^Gram") {
x_trimmed[i] <- gsub("^Gram", "", x_trimmed[i], ignore.case = TRUE)
@ -338,12 +306,23 @@ as.mo <- function(x, Becker = FALSE, Lancefield = FALSE) {
}
}
# not found
# not found ----
x[i] <- NA_character_
failures <- c(failures, x_backup[i])
}
# avoid detection of Staphylococcus auricularis in case of S. aureus ----
x[x == "STAAUC" & toupper(x_backup) != "STAAUC" & !x_backup %like% 'auri'] <- "STAAUR"
# avoid detection of Entamoeba coli in case of E. coli ----
x[x == "ENMCOL" & toupper(x_backup) != "ENMCOL" & !x_backup %like% '^ent?'] <- "ESCCOL"
# avoid detection of Haematobacter influenzae in case of H. influenzae ----
x[x == "HABINF" & toupper(x_backup) != "HABINF" & !x_backup %like% '^haema'] <- "HAEINF"
# avoid detection of Pasteurella aerogenes in case of P. aeruginosa ----
x[x == "PASAER" & toupper(x_backup) != "PASAER" & !(x_backup %like% '^pas?' | x_backup %like% 'aero')] <- "PSEAER"
# avoid detection of Legionella non pneumophila in case of Legionella pneumophila ----
x[x == "LEGNON" & toupper(x_backup) != "LEGNON" & !x_backup %like% 'non'] <- "LEGPNE"
failures <- failures[!failures %in% c(NA, NULL, NaN)]
if (length(failures) > 0) {
warning("These ", length(failures) , " values could not be coerced to a valid mo: ",
@ -352,6 +331,7 @@ as.mo <- function(x, Becker = FALSE, Lancefield = FALSE) {
call. = FALSE)
}
# Becker ----
if (Becker == TRUE | Becker == "all") {
# See Source. It's this figure:
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187637/figure/F3/
@ -384,6 +364,7 @@ as.mo <- function(x, Becker = FALSE, Lancefield = FALSE) {
}
}
# Lancefield ----
if (Lancefield == TRUE | Lancefield == "all") {
# group A
x[x == "STCPYO"] <- "STCGRA" # S. pyogenes
@ -406,7 +387,8 @@ as.mo <- function(x, Becker = FALSE, Lancefield = FALSE) {
x[x == "STCSAL"] <- "STCGRK" # S. salivarius
}
# for the returned genera without species (like "ESC"), add species (like "ESCSPP") where the input contained it
# for the returned genera without species, add species ----
# like "ESC" -> "ESCSPP", but only where the input contained it
indices <- unique(x_input) %like% "[A-Z]{3}SPP" & !x %like% "[A-Z]{3}SPP"
x[indices] <- paste0(x[indices], 'SPP')
@ -468,33 +450,3 @@ as.data.frame.mo <- function (x, ...) {
pull.mo <- function(.data, ...) {
pull(as.data.frame(.data), ...)
}
#' @exportMethod print.bactid
#' @export
#' @noRd
print.bactid <- function(x, ...) {
cat("Class 'bactid'\n")
print.default(as.character(x), quote = FALSE)
}
#' @exportMethod as.data.frame.bactid
#' @export
#' @noRd
as.data.frame.bactid <- function (x, ...) {
# same as as.data.frame.character but with removed stringsAsFactors
nm <- paste(deparse(substitute(x), width.cutoff = 500L),
collapse = " ")
if (!"nm" %in% names(list(...))) {
as.data.frame.vector(x, ..., nm = nm)
} else {
as.data.frame.vector(x, ...)
}
}
#' @exportMethod pull.bactid
#' @export
#' @importFrom dplyr pull
#' @noRd
pull.bactid <- function(.data, ...) {
pull(as.data.frame(.data), ...)
}