1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-23 21:44:35 +01:00
This commit is contained in:
dr. M.S. (Matthijs) Berends 2022-10-22 10:20:09 +02:00
parent d0b54f640c
commit d10651eb26
6 changed files with 17 additions and 24 deletions

View File

@ -1,6 +1,6 @@
Package: AMR
Version: 1.8.2.9031
Date: 2022-10-21
Version: 1.8.2.9032
Date: 2022-10-22
Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by

View File

@ -1,4 +1,4 @@
# AMR 1.8.2.9031
# AMR 1.8.2.9032
This version will eventually become v2.0! We're happy to reach a new major milestone soon!

View File

@ -94,6 +94,8 @@ globalVariables(c(
"atc_group1",
"atc_group2",
"base_ab",
"ci_min",
"ci_max",
"code",
"cols",
"count",

View File

@ -111,26 +111,19 @@ add_custom_antimicrobials <- function(x) {
}
AMR_env$custom_ab_codes <- c(AMR_env$custom_ab_codes, x$ab)
class(AMR_env$AB_lookup$ab) <- "character"
bind_rows <- import_fn("bind_rows", "dplyr", error_on_fail = FALSE)
if (is.null(bind_rows)) {
# do the binding in base R
new_df <- AMR_env$AB_lookup[0, , drop = FALSE][seq_len(NROW(x)), , drop = FALSE]
rownames(new_df) <- NULL
list_cols <- vapply(FUN.VALUE = logical(1), new_df, is.list)
for (l in which(list_cols)) {
# prevent binding NULLs in lists, replace with NA
new_df[, l] <- as.list(NA_character_)
}
for (col in colnames(x)) {
# assign new values
new_df[, col] <- x[, col, drop = TRUE]
}
AMR_env$AB_lookup <- unique(rbind(AMR_env$AB_lookup, new_df))
} else {
# otherwise use dplyr
AMR_env$AB_lookup <- unique(bind_rows(AMR_env$AB_lookup, x))
new_df <- AMR_env$AB_lookup[0, , drop = FALSE][seq_len(NROW(x)), , drop = FALSE]
rownames(new_df) <- NULL
list_cols <- vapply(FUN.VALUE = logical(1), new_df, is.list)
for (l in which(list_cols)) {
# prevent binding NULLs in lists, replace with NA
new_df[, l] <- as.list(NA_character_)
}
for (col in colnames(x)) {
# assign new values
new_df[, col] <- x[, col, drop = TRUE]
}
AMR_env$AB_lookup <- unique(rbind(AMR_env$AB_lookup, new_df))
class(AMR_env$AB_lookup$ab) <- c("ab", "character")
message_("Added ", nr2char(nrow(x)), " record", ifelse(nrow(x) > 1, "s", ""), " to the internal `antibiotics` data set.")
}

View File

@ -279,7 +279,6 @@ rsi_calc_df <- function(type, # "proportion", "count" or "both"
col_results <- as.data.frame(as.matrix(table(values)), stringsAsFactors = FALSE)
col_results$interpretation <- rownames(col_results)
col_results$isolates <- col_results[, 1, drop = TRUE]
ddf <<- col_results
if (NROW(col_results) > 0 && sum(col_results$isolates, na.rm = TRUE) > 0) {
if (sum(col_results$isolates, na.rm = TRUE) >= minimum) {
col_results$value <- col_results$isolates / sum(col_results$isolates, na.rm = TRUE)

View File

@ -34,7 +34,6 @@
import_functions <- c(
"%chin%" = "data.table",
"anti_join" = "dplyr",
"bind_rows" = "dplyr",
"chmatch" = "data.table",
"cur_column" = "dplyr",
"full_join" = "dplyr",