mirror of
https://github.com/msberends/AMR.git
synced 2025-12-24 09:10:19 +01:00
(v3.0.1.9008) tidymodels vignette
This commit is contained in:
@@ -1,5 +1,5 @@
|
|||||||
Package: AMR
|
Package: AMR
|
||||||
Version: 3.0.1.9007
|
Version: 3.0.1.9008
|
||||||
Date: 2025-12-22
|
Date: 2025-12-22
|
||||||
Title: Antimicrobial Resistance Data Analysis
|
Title: Antimicrobial Resistance Data Analysis
|
||||||
Description: Functions to simplify and standardise antimicrobial resistance (AMR)
|
Description: Functions to simplify and standardise antimicrobial resistance (AMR)
|
||||||
|
|||||||
2
NEWS.md
2
NEWS.md
@@ -1,4 +1,4 @@
|
|||||||
# AMR 3.0.1.9007
|
# AMR 3.0.1.9008
|
||||||
|
|
||||||
### New
|
### New
|
||||||
* Integration with the **tidymodels** framework to allow seamless use of SIR, MIC and disk data in modelling pipelines via `recipes`
|
* Integration with the **tidymodels** framework to allow seamless use of SIR, MIC and disk data in modelling pipelines via `recipes`
|
||||||
|
|||||||
@@ -208,7 +208,7 @@ predictions %>%
|
|||||||
|
|
||||||
### **Conclusion**
|
### **Conclusion**
|
||||||
|
|
||||||
In this post, we demonstrated how to build a machine learning pipeline with the `tidymodels` framework and the `AMR` package. By combining selector functions like `aminoglycosides()` and `betalactams()` with `tidymodels`, we efficiently prepared data, trained a model, and evaluated its performance.
|
In this example, we demonstrated how to build a machine learning pipeline with the `tidymodels` framework and the `AMR` package. By combining selector functions like `aminoglycosides()` and `betalactams()` with `tidymodels`, we efficiently prepared data, trained a model, and evaluated its performance.
|
||||||
|
|
||||||
This workflow is extensible to other antimicrobial classes and resistance patterns, empowering users to analyse AMR data systematically and reproducibly.
|
This workflow is extensible to other antimicrobial classes and resistance patterns, empowering users to analyse AMR data systematically and reproducibly.
|
||||||
|
|
||||||
@@ -267,8 +267,8 @@ testing_data <- testing(split)
|
|||||||
# Define the recipe
|
# Define the recipe
|
||||||
mic_recipe <- recipe(esbl ~ ., data = training_data) %>%
|
mic_recipe <- recipe(esbl ~ ., data = training_data) %>%
|
||||||
remove_role(genus, old_role = "predictor") %>% # Remove non-informative variable
|
remove_role(genus, old_role = "predictor") %>% # Remove non-informative variable
|
||||||
step_mic_log2(all_mic_predictors()) #%>% # Log2 transform all MIC predictors
|
step_mic_log2(all_mic_predictors()) %>% # Log2 transform all MIC predictors
|
||||||
# prep()
|
prep()
|
||||||
|
|
||||||
mic_recipe
|
mic_recipe
|
||||||
```
|
```
|
||||||
@@ -366,6 +366,7 @@ predictions %>%
|
|||||||
limits = c(0.5, 1)) +
|
limits = c(0.5, 1)) +
|
||||||
theme_minimal()
|
theme_minimal()
|
||||||
```
|
```
|
||||||
|
|
||||||
### **Conclusion**
|
### **Conclusion**
|
||||||
|
|
||||||
In this example, we showcased how the new `AMR`-specific recipe steps simplify working with `<mic>` columns in `tidymodels`. The `step_mic_log2()` transformation converts ordered MICs to log2-transformed numerics, improving compatibility with classification models.
|
In this example, we showcased how the new `AMR`-specific recipe steps simplify working with `<mic>` columns in `tidymodels`. The `step_mic_log2()` transformation converts ordered MICs to log2-transformed numerics, improving compatibility with classification models.
|
||||||
|
|||||||
Reference in New Issue
Block a user