1
0
mirror of https://github.com/msberends/AMR.git synced 2025-09-04 12:09:37 +02:00

8 Commits

20 changed files with 496 additions and 294 deletions

View File

@@ -68,35 +68,41 @@ echo ""
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
echo "Updating semantic versioning and date..." echo "Updating semantic versioning and date..."
# Get tags from remote and remove tags not on remote current_branch=$(git rev-parse --abbrev-ref HEAD)
git fetch origin --prune --prune-tags --quiet if [ "$current_branch" != "main" ]; then
currenttagfull=$(git describe --tags --abbrev=0) echo "- Current branch is '$current_branch'; skipping version/date update (only runs on 'main')"
currenttag=$(git describe --tags --abbrev=0 | sed 's/v//') else
# Version update logic begins here
# Assume main branch to be 'main' or 'master' # Get tags from remote and remove tags not on remote
defaultbranch=$(git branch | cut -c 3- | grep -E '^master$|^main$') git fetch origin --prune --prune-tags --quiet
if [ "$currenttag" = "" ]; then currenttagfull=$(git describe --tags --abbrev=0)
currenttag=$(git describe --tags --abbrev=0 | sed 's/v//')
# Assume main branch to be 'main' or 'master'
defaultbranch=$(git branch | cut -c 3- | grep -E '^master$|^main$')
if [ "$currenttag" = "" ]; then
currenttag="0.0.1" currenttag="0.0.1"
currentcommit=$(git rev-list --count ${defaultbranch}) currentcommit=$(git rev-list --count ${defaultbranch})
echo "- No git tags found, creating one in format 'v(x).(y).(z)' - currently ${currentcommit} previous commits in '${defaultbranch}'" echo "- No git tags found, creating one in format 'v(x).(y).(z)' - currently ${currentcommit} previous commits in '${defaultbranch}'"
else else
currentcommit=$(git rev-list --count ${currenttagfull}..${defaultbranch}) currentcommit=$(git rev-list --count ${currenttagfull}..${defaultbranch})
echo "- Latest tag is '${currenttagfull}', with ${currentcommit} previous commits in '${defaultbranch}'" echo "- Latest tag is '${currenttagfull}', with ${currentcommit} previous commits in '${defaultbranch}'"
fi fi
# Combine tag and commit number # Combine tag and commit number
currentversion="$currenttag.$((currentcommit + 9001))" currentversion="$currenttag.$((currentcommit + 9001))"
echo "- ${currentpkg} pkg version set to ${currentversion}" echo "- ${currentpkg} pkg version set to ${currentversion}"
# Update version number and date in DESCRIPTION # Update version number and date in DESCRIPTION
sed -i -- "s/^Version: .*/Version: ${currentversion}/" DESCRIPTION sed -i -- "s/^Version: .*/Version: ${currentversion}/" DESCRIPTION
sed -i -- "s/^Date: .*/Date: $(date '+%Y-%m-%d')/" DESCRIPTION sed -i -- "s/^Date: .*/Date: $(date '+%Y-%m-%d')/" DESCRIPTION
echo "- Updated version number and date in ./DESCRIPTION" echo "- Updated version number and date in ./DESCRIPTION"
rm -f DESCRIPTION-- rm -f DESCRIPTION--
git add DESCRIPTION git add DESCRIPTION
# Update version number in NEWS.md # Update version number in NEWS.md
if [ -e "NEWS.md" ]; then if [ -e "NEWS.md" ]; then
if [ "$currentpkg" = "your" ]; then if [ "$currentpkg" = "your" ]; then
currentpkg="" currentpkg=""
fi fi
@@ -104,13 +110,14 @@ if [ -e "NEWS.md" ]; then
echo "- Updated version number in ./NEWS.md" echo "- Updated version number in ./NEWS.md"
rm -f NEWS.md-- rm -f NEWS.md--
git add NEWS.md git add NEWS.md
else else
echo "- No NEWS.md found!" echo "- No NEWS.md found!"
fi fi
echo "" echo ""
# Save the version number for use in the commit-msg hook # Save the version number for use in the commit-msg hook
echo "${currentversion}" > .git/commit_version.tmp echo "${currentversion}" > .git/commit_version.tmp
fi
git add data-raw/* git add data-raw/*
git add data/* git add data/*

View File

@@ -59,8 +59,15 @@ jobs:
env: env:
R_REMOTES_NO_ERRORS_FROM_WARNINGS: true R_REMOTES_NO_ERRORS_FROM_WARNINGS: true
LANG: en_US.UTF-8
LC_ALL: en_US.UTF-8
steps: steps:
- name: Set up locales
run: |
sudo locale-gen en_US.UTF-8
sudo update-locale LANG=en_US.UTF-8
- uses: actions/checkout@v4 - uses: actions/checkout@v4
- uses: r-lib/actions/setup-r@v2 - uses: r-lib/actions/setup-r@v2

View File

@@ -1,6 +1,6 @@
Package: AMR Package: AMR
Version: 3.0.0.9010 Version: 3.0.0.9017
Date: 2025-07-17 Date: 2025-07-28
Title: Antimicrobial Resistance Data Analysis Title: Antimicrobial Resistance Data Analysis
Description: Functions to simplify and standardise antimicrobial resistance (AMR) Description: Functions to simplify and standardise antimicrobial resistance (AMR)
data analysis and to work with microbial and antimicrobial properties by data analysis and to work with microbial and antimicrobial properties by

View File

@@ -12,6 +12,7 @@ S3method("[",deprecated_amr_dataset)
S3method("[",disk) S3method("[",disk)
S3method("[",mic) S3method("[",mic)
S3method("[",mo) S3method("[",mo)
S3method("[",sir)
S3method("[<-",ab) S3method("[<-",ab)
S3method("[<-",av) S3method("[<-",av)
S3method("[<-",disk) S3method("[<-",disk)
@@ -24,6 +25,7 @@ S3method("[[",deprecated_amr_dataset)
S3method("[[",disk) S3method("[[",disk)
S3method("[[",mic) S3method("[[",mic)
S3method("[[",mo) S3method("[[",mo)
S3method("[[",sir)
S3method("[[<-",ab) S3method("[[<-",ab)
S3method("[[<-",av) S3method("[[<-",av)
S3method("[[<-",disk) S3method("[[<-",disk)
@@ -99,6 +101,7 @@ S3method(print,custom_eucast_rules)
S3method(print,custom_mdro_guideline) S3method(print,custom_mdro_guideline)
S3method(print,deprecated_amr_dataset) S3method(print,deprecated_amr_dataset)
S3method(print,disk) S3method(print,disk)
S3method(print,interpreted_sir)
S3method(print,mic) S3method(print,mic)
S3method(print,mo) S3method(print,mo)
S3method(print,mo_renamed) S3method(print,mo_renamed)

View File

@@ -1,4 +1,4 @@
# AMR 3.0.0.9010 # AMR 3.0.0.9017
This is primarily a bugfix release, though we added one nice feature too. This is primarily a bugfix release, though we added one nice feature too.
@@ -17,6 +17,7 @@ This is primarily a bugfix release, though we added one nice feature too.
* Fixed a bug in `ggplot_sir()` when using `combine_SI = FALSE` (#213) * Fixed a bug in `ggplot_sir()` when using `combine_SI = FALSE` (#213)
* Fixed all plotting to contain a separate colour for SDD (susceptible dose-dependent) (#223) * Fixed all plotting to contain a separate colour for SDD (susceptible dose-dependent) (#223)
* Fixed some specific Dutch translations for antimicrobials * Fixed some specific Dutch translations for antimicrobials
* Added `names` to `age_groups()` so that custom names can be given (#215)
* Added note to `as.sir()` to make it explicit when higher-level taxonomic breakpoints are used (#218) * Added note to `as.sir()` to make it explicit when higher-level taxonomic breakpoints are used (#218)
* Updated `random_mic()` and `random_disk()` to set skewedness of the distribution and allow multiple microorganisms * Updated `random_mic()` and `random_disk()` to set skewedness of the distribution and allow multiple microorganisms

View File

@@ -519,7 +519,7 @@ word_wrap <- function(...,
) )
msg <- paste0(parts, collapse = "`") msg <- paste0(parts, collapse = "`")
} }
msg <- gsub("`(.+?)`", font_grey_bg("\\1"), msg) msg <- gsub("`(.+?)`", font_grey_bg("`\\1`"), msg)
# clean introduced whitespace in between fullstops # clean introduced whitespace in between fullstops
msg <- gsub("[.] +[.]", "..", msg) msg <- gsub("[.] +[.]", "..", msg)

12
R/age.R
View File

@@ -128,9 +128,10 @@ age <- function(x, reference = Sys.Date(), exact = FALSE, na.rm = FALSE, ...) {
#' Split Ages into Age Groups #' Split Ages into Age Groups
#' #'
#' Split ages into age groups defined by the `split` argument. This allows for easier demographic (antimicrobial resistance) analysis. #' Split ages into age groups defined by the `split` argument. This allows for easier demographic (antimicrobial resistance) analysis. The function returns an ordered [factor].
#' @param x Age, e.g. calculated with [age()]. #' @param x Age, e.g. calculated with [age()].
#' @param split_at Values to split `x` at - the default is age groups 0-11, 12-24, 25-54, 55-74 and 75+. See *Details*. #' @param split_at Values to split `x` at - the default is age groups 0-11, 12-24, 25-54, 55-74 and 75+. See *Details*.
#' @param names Optional names to be given to the various age groups.
#' @param na.rm A [logical] to indicate whether missing values should be removed. #' @param na.rm A [logical] to indicate whether missing values should be removed.
#' @details To split ages, the input for the `split_at` argument can be: #' @details To split ages, the input for the `split_at` argument can be:
#' #'
@@ -152,6 +153,7 @@ age <- function(x, reference = Sys.Date(), exact = FALSE, na.rm = FALSE, ...) {
#' #'
#' # split into 0-19, 20-49 and 50+ #' # split into 0-19, 20-49 and 50+
#' age_groups(ages, c(20, 50)) #' age_groups(ages, c(20, 50))
#' age_groups(ages, c(20, 50), names = c("Under 20 years", "20 to 50 years", "Over 50 years"))
#' #'
#' # split into groups of ten years #' # split into groups of ten years
#' age_groups(ages, 1:10 * 10) #' age_groups(ages, 1:10 * 10)
@@ -181,9 +183,10 @@ age <- function(x, reference = Sys.Date(), exact = FALSE, na.rm = FALSE, ...) {
#' ) #' )
#' } #' }
#' } #' }
age_groups <- function(x, split_at = c(12, 25, 55, 75), na.rm = FALSE) { age_groups <- function(x, split_at = c(0, 12, 25, 55, 75), names = NULL, na.rm = FALSE) {
meet_criteria(x, allow_class = c("numeric", "integer"), is_positive_or_zero = TRUE, is_finite = TRUE) meet_criteria(x, allow_class = c("numeric", "integer"), is_positive_or_zero = TRUE, is_finite = TRUE)
meet_criteria(split_at, allow_class = c("numeric", "integer", "character"), is_positive_or_zero = TRUE, is_finite = TRUE) meet_criteria(split_at, allow_class = c("numeric", "integer", "character"), is_positive_or_zero = TRUE, is_finite = TRUE)
meet_criteria(names, allow_class = "character", allow_NULL = TRUE)
meet_criteria(na.rm, allow_class = "logical", has_length = 1) meet_criteria(na.rm, allow_class = "logical", has_length = 1)
if (any(x < 0, na.rm = TRUE)) { if (any(x < 0, na.rm = TRUE)) {
@@ -224,6 +227,11 @@ age_groups <- function(x, split_at = c(12, 25, 55, 75), na.rm = FALSE) {
agegroups <- factor(lbls[y], levels = lbls, ordered = TRUE) agegroups <- factor(lbls[y], levels = lbls, ordered = TRUE)
if (!is.null(names)) {
stop_ifnot(length(names) == length(levels(agegroups)), "`names` must have the same length as the number of age groups (", length(levels(agegroups)), ").")
levels(agegroups) <- names
}
if (isTRUE(na.rm)) { if (isTRUE(na.rm)) {
agegroups <- agegroups[!is.na(agegroups)] agegroups <- agegroups[!is.na(agegroups)]
} }

View File

@@ -177,8 +177,8 @@ ggplot_sir <- function(data,
nrow = NULL, nrow = NULL,
colours = c( colours = c(
S = "#3CAEA3", S = "#3CAEA3",
SI = "#3CAEA3",
SDD = "#8FD6C4", SDD = "#8FD6C4",
SI = "#3CAEA3",
I = "#F6D55C", I = "#F6D55C",
IR = "#ED553B", IR = "#ED553B",
R = "#ED553B" R = "#ED553B"
@@ -206,7 +206,7 @@ ggplot_sir <- function(data,
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE) meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_positive_or_zero = TRUE, is_finite = TRUE)
language <- validate_language(language) language <- validate_language(language)
meet_criteria(nrow, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE, is_positive = TRUE, is_finite = TRUE) meet_criteria(nrow, allow_class = c("numeric", "integer"), has_length = 1, allow_NULL = TRUE, is_positive = TRUE, is_finite = TRUE)
meet_criteria(colours, allow_class = c("character", "logical")) meet_criteria(colours, allow_class = c("character", "logical"), allow_NULL = TRUE)
meet_criteria(datalabels, allow_class = "logical", has_length = 1) meet_criteria(datalabels, allow_class = "logical", has_length = 1)
meet_criteria(datalabels.size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE) meet_criteria(datalabels.size, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(datalabels.colour, allow_class = "character", has_length = 1) meet_criteria(datalabels.colour, allow_class = "character", has_length = 1)
@@ -246,7 +246,7 @@ ggplot_sir <- function(data,
) + ) +
theme_sir() theme_sir()
if (fill == "interpretation") { if (fill == "interpretation" && !is.null(colours) && !isFALSE(colours)) {
p <- suppressWarnings(p + scale_sir_colours(aesthetics = "fill", colours = colours)) p <- suppressWarnings(p + scale_sir_colours(aesthetics = "fill", colours = colours))
} }

View File

@@ -90,6 +90,10 @@
#' autoplot(some_mic_values, mo = "Escherichia coli", ab = "cipro") #' autoplot(some_mic_values, mo = "Escherichia coli", ab = "cipro")
#' } #' }
#' if (require("ggplot2")) { #' if (require("ggplot2")) {
#' autoplot(some_mic_values, mo = "Staph aureus", ab = "Ceftaroline", guideline = "CLSI")
#' }
#'
#' if (require("ggplot2")) {
#' # support for 27 languages, various guidelines, and many options #' # support for 27 languages, various guidelines, and many options
#' autoplot(some_disk_values, #' autoplot(some_disk_values,
#' mo = "Escherichia coli", ab = "cipro", #' mo = "Escherichia coli", ab = "cipro",
@@ -146,7 +150,7 @@
#' aes(group, mic) #' aes(group, mic)
#' ) + #' ) +
#' geom_boxplot() + #' geom_boxplot() +
#' geom_violin(linetype = 2, colour = "grey", fill = NA) + #' geom_violin(linetype = 2, colour = "grey30", fill = NA) +
#' scale_y_mic() #' scale_y_mic()
#' } #' }
#' if (require("ggplot2")) { #' if (require("ggplot2")) {
@@ -158,7 +162,7 @@
#' aes(group, mic) #' aes(group, mic)
#' ) + #' ) +
#' geom_boxplot() + #' geom_boxplot() +
#' geom_violin(linetype = 2, colour = "grey", fill = NA) + #' geom_violin(linetype = 2, colour = "grey30", fill = NA) +
#' scale_y_mic(mic_range = c(NA, 0.25)) #' scale_y_mic(mic_range = c(NA, 0.25))
#' } #' }
#' #'
@@ -191,7 +195,7 @@
#' aes(x = group, y = mic, colour = sir) #' aes(x = group, y = mic, colour = sir)
#' ) + #' ) +
#' theme_minimal() + #' theme_minimal() +
#' geom_boxplot(fill = NA, colour = "grey") + #' geom_boxplot(fill = NA, colour = "grey30") +
#' geom_jitter(width = 0.25) #' geom_jitter(width = 0.25)
#' #'
#' plain #' plain
@@ -377,12 +381,7 @@ create_scale_sir <- function(aesthetics, colours_SIR, language, eucast_I, ...) {
args <- list(...) args <- list(...)
args[c("value", "labels", "limits")] <- NULL args[c("value", "labels", "limits")] <- NULL
if (length(colours_SIR) == 1) { colours_SIR <- expand_SIR_colours(colours_SIR, unname = FALSE)
colours_SIR <- rep(colours_SIR, 4)
} else if (length(colours_SIR) == 3) {
colours_SIR <- c(colours_SIR[1], colours_SIR[1], colours_SIR[2], colours_SIR[3])
}
colours_SIR <- unname(colours_SIR)
if (identical(aesthetics, "x")) { if (identical(aesthetics, "x")) {
ggplot_fn <- ggplot2::scale_x_discrete ggplot_fn <- ggplot2::scale_x_discrete
@@ -392,24 +391,19 @@ create_scale_sir <- function(aesthetics, colours_SIR, language, eucast_I, ...) {
args, args,
list( list(
aesthetics = aesthetics, aesthetics = aesthetics,
values = c( values = c(colours_SIR, NI = "grey30")
S = colours_SIR[1],
SDD = colours_SIR[2],
I = colours_SIR[3],
R = colours_SIR[4],
NI = "grey30"
)
) )
) )
} }
scale <- do.call(ggplot_fn, args) scale <- do.call(ggplot_fn, args)
scale$labels <- function(x) { scale$labels <- function(x) {
stop_ifnot(all(x %in% c(levels(NA_sir_), NA)), stop_ifnot(all(x %in% c(levels(NA_sir_), "SI", "IR", NA)),
"Apply `scale_", aesthetics[1], "_sir()` to a variable of class 'sir', see `?as.sir`.", "Apply `scale_", aesthetics[1], "_sir()` to a variable of class 'sir', see `?as.sir`.",
call = FALSE call = FALSE
) )
x <- as.character(as.sir(x)) x <- as.character(x)
x[!x %in% c("SI", "IR")] <- as.character(as.sir(x[!x %in% c("SI", "IR")]))
if (!is.null(language)) { if (!is.null(language)) {
x[x == "S"] <- "(S) Susceptible" x[x == "S"] <- "(S) Susceptible"
x[x == "SDD"] <- "(SDD) Susceptible dose-dependent" x[x == "SDD"] <- "(SDD) Susceptible dose-dependent"
@@ -419,6 +413,8 @@ create_scale_sir <- function(aesthetics, colours_SIR, language, eucast_I, ...) {
x[x == "I"] <- "(I) Intermediate" x[x == "I"] <- "(I) Intermediate"
} }
x[x == "R"] <- "(R) Resistant" x[x == "R"] <- "(R) Resistant"
x[x == "SI"] <- "(S/I) Susceptible"
x[x == "IR"] <- "(I/R) Non-susceptible"
x[x == "NI"] <- "(NI) Non-interpretable" x[x == "NI"] <- "(NI) Non-interpretable"
x <- translate_AMR(x, language = language) x <- translate_AMR(x, language = language)
} }
@@ -426,7 +422,7 @@ create_scale_sir <- function(aesthetics, colours_SIR, language, eucast_I, ...) {
} }
scale$limits <- function(x, ...) { scale$limits <- function(x, ...) {
# force SIR in the right order # force SIR in the right order
as.character(sort(factor(x, levels = levels(NA_sir_)))) as.character(sort(factor(x, levels = c(levels(NA_sir_), "SI", "IR"))))
} }
scale scale
@@ -536,6 +532,7 @@ plot.mic <- function(x,
x <- as.mic(x) # make sure that currently implemented MIC levels are used x <- as.mic(x) # make sure that currently implemented MIC levels are used
main <- gsub(" +", " ", paste0(main, collapse = " ")) main <- gsub(" +", " ", paste0(main, collapse = " "))
colours_SIR <- expand_SIR_colours(colours_SIR)
x <- plotrange_as_table(x, expand = expand) x <- plotrange_as_table(x, expand = expand)
cols_sub <- plot_colours_subtitle_guideline( cols_sub <- plot_colours_subtitle_guideline(
@@ -683,6 +680,8 @@ autoplot.mic <- function(object,
title <- gsub(" +", " ", paste0(title, collapse = " ")) title <- gsub(" +", " ", paste0(title, collapse = " "))
} }
colours_SIR <- expand_SIR_colours(colours_SIR)
object <- as.mic(object) # make sure that currently implemented MIC levels are used object <- as.mic(object) # make sure that currently implemented MIC levels are used
x <- plotrange_as_table(object, expand = expand) x <- plotrange_as_table(object, expand = expand)
cols_sub <- plot_colours_subtitle_guideline( cols_sub <- plot_colours_subtitle_guideline(
@@ -702,12 +701,14 @@ autoplot.mic <- function(object,
colnames(df) <- c("mic", "count") colnames(df) <- c("mic", "count")
df$cols <- cols_sub$cols df$cols <- cols_sub$cols
df$cols[df$cols == colours_SIR[1]] <- "(S) Susceptible" df$cols[df$cols == colours_SIR[1]] <- "(S) Susceptible"
df$cols[df$cols == colours_SIR[2]] <- paste("(I)", plot_name_of_I(cols_sub$guideline)) df$cols[df$cols == colours_SIR[2]] <- "(SDD) Susceptible dose-dependent"
df$cols[df$cols == colours_SIR[3]] <- "(R) Resistant" df$cols[df$cols == colours_SIR[3]] <- paste("(I)", plot_name_of_I(cols_sub$guideline))
df$cols[df$cols == colours_SIR[4]] <- "(R) Resistant"
df$cols <- factor(translate_into_language(df$cols, language = language), df$cols <- factor(translate_into_language(df$cols, language = language),
levels = translate_into_language( levels = translate_into_language(
c( c(
"(S) Susceptible", "(S) Susceptible",
"(SDD) Susceptible dose-dependent",
paste("(I)", plot_name_of_I(cols_sub$guideline)), paste("(I)", plot_name_of_I(cols_sub$guideline)),
"(R) Resistant" "(R) Resistant"
), ),
@@ -721,10 +722,10 @@ autoplot.mic <- function(object,
vals <- c( vals <- c(
"(S) Susceptible" = colours_SIR[1], "(S) Susceptible" = colours_SIR[1],
"(SDD) Susceptible dose-dependent" = colours_SIR[2], "(SDD) Susceptible dose-dependent" = colours_SIR[2],
"(I) Susceptible, incr. exp." = colours_SIR[2], "(I) Susceptible, incr. exp." = colours_SIR[3],
"(I) Intermediate" = colours_SIR[2], "(I) Intermediate" = colours_SIR[3],
"(R) Resistant" = colours_SIR[3], "(R) Resistant" = colours_SIR[4],
"(NI) Non-interpretable" = "grey" "(NI) Non-interpretable" = "grey30"
) )
names(vals) <- translate_into_language(names(vals), language = language) names(vals) <- translate_into_language(names(vals), language = language)
p <- p + p <- p +
@@ -790,6 +791,7 @@ plot.disk <- function(x,
meet_criteria(expand, allow_class = "logical", has_length = 1) meet_criteria(expand, allow_class = "logical", has_length = 1)
main <- gsub(" +", " ", paste0(main, collapse = " ")) main <- gsub(" +", " ", paste0(main, collapse = " "))
colours_SIR <- expand_SIR_colours(colours_SIR)
x <- plotrange_as_table(x, expand = expand) x <- plotrange_as_table(x, expand = expand)
cols_sub <- plot_colours_subtitle_guideline( cols_sub <- plot_colours_subtitle_guideline(
@@ -935,6 +937,8 @@ autoplot.disk <- function(object,
title <- gsub(" +", " ", paste0(title, collapse = " ")) title <- gsub(" +", " ", paste0(title, collapse = " "))
} }
colours_SIR <- expand_SIR_colours(colours_SIR)
x <- plotrange_as_table(object, expand = expand) x <- plotrange_as_table(object, expand = expand)
cols_sub <- plot_colours_subtitle_guideline( cols_sub <- plot_colours_subtitle_guideline(
x = x, x = x,
@@ -952,10 +956,10 @@ autoplot.disk <- function(object,
df <- as.data.frame(x, stringsAsFactors = TRUE) df <- as.data.frame(x, stringsAsFactors = TRUE)
colnames(df) <- c("disk", "count") colnames(df) <- c("disk", "count")
df$cols <- cols_sub$cols df$cols <- cols_sub$cols
df$cols[df$cols == colours_SIR[1]] <- "(S) Susceptible" df$cols[df$cols == colours_SIR[1]] <- "(S) Susceptible"
df$cols[df$cols == colours_SIR[2]] <- paste("(I)", plot_name_of_I(cols_sub$guideline)) df$cols[df$cols == colours_SIR[2]] <- "(SDD) Susceptible dose-dependent"
df$cols[df$cols == colours_SIR[3]] <- "(R) Resistant" df$cols[df$cols == colours_SIR[3]] <- paste("(I)", plot_name_of_I(cols_sub$guideline))
df$cols[df$cols == colours_SIR[4]] <- "(R) Resistant"
df$cols <- factor(translate_into_language(df$cols, language = language), df$cols <- factor(translate_into_language(df$cols, language = language),
levels = translate_into_language( levels = translate_into_language(
c( c(
@@ -973,10 +977,10 @@ autoplot.disk <- function(object,
vals <- c( vals <- c(
"(S) Susceptible" = colours_SIR[1], "(S) Susceptible" = colours_SIR[1],
"(SDD) Susceptible dose-dependent" = colours_SIR[2], "(SDD) Susceptible dose-dependent" = colours_SIR[2],
"(I) Susceptible, incr. exp." = colours_SIR[2], "(I) Susceptible, incr. exp." = colours_SIR[3],
"(I) Intermediate" = colours_SIR[2], "(I) Intermediate" = colours_SIR[3],
"(R) Resistant" = colours_SIR[3], "(R) Resistant" = colours_SIR[4],
"(NI) Non-interpretable" = "grey" "(NI) Non-interpretable" = "grey30"
) )
names(vals) <- translate_into_language(names(vals), language = language) names(vals) <- translate_into_language(names(vals), language = language)
p <- p + p <- p +
@@ -1093,12 +1097,7 @@ barplot.sir <- function(height,
language <- validate_language(language) language <- validate_language(language)
meet_criteria(expand, allow_class = "logical", has_length = 1) meet_criteria(expand, allow_class = "logical", has_length = 1)
if (length(colours_SIR) == 1) { colours_SIR <- expand_SIR_colours(colours_SIR)
colours_SIR <- rep(colours_SIR, 4)
} else if (length(colours_SIR) == 3) {
colours_SIR <- c(colours_SIR[1], colours_SIR[1], colours_SIR[2], colours_SIR[3])
}
colours_SIR <- unname(colours_SIR)
# add SDD and N to colours # add SDD and N to colours
colours_SIR <- c(colours_SIR, "grey30") colours_SIR <- c(colours_SIR, "grey30")
@@ -1148,12 +1147,7 @@ autoplot.sir <- function(object,
title <- gsub(" +", " ", paste0(title, collapse = " ")) title <- gsub(" +", " ", paste0(title, collapse = " "))
} }
if (length(colours_SIR) == 1) { colours_SIR <- expand_SIR_colours(colours_SIR)
colours_SIR <- rep(colours_SIR, 4)
} else if (length(colours_SIR) == 3) {
colours_SIR <- c(colours_SIR[1], colours_SIR[1], colours_SIR[2], colours_SIR[3])
}
colours_SIR <- unname(colours_SIR)
df <- as.data.frame(table(object), stringsAsFactors = TRUE) df <- as.data.frame(table(object), stringsAsFactors = TRUE)
colnames(df) <- c("x", "n") colnames(df) <- c("x", "n")
@@ -1252,13 +1246,6 @@ plot_colours_subtitle_guideline <- function(x, mo, ab, guideline, colours_SIR, f
guideline <- get_guideline(guideline, AMR::clinical_breakpoints) guideline <- get_guideline(guideline, AMR::clinical_breakpoints)
if (length(colours_SIR) == 1) {
colours_SIR <- rep(colours_SIR, 4)
} else if (length(colours_SIR) == 3) {
colours_SIR <- c(colours_SIR[1], colours_SIR[1], colours_SIR[2], colours_SIR[3])
}
colours_SIR <- unname(colours_SIR)
# store previous interpretations to backup # store previous interpretations to backup
sir_history <- AMR_env$sir_interpretation_history sir_history <- AMR_env$sir_interpretation_history
# and clear previous interpretations # and clear previous interpretations
@@ -1382,11 +1369,7 @@ scale_sir_colours <- function(...,
colours_SIR <- list(...)$colours colours_SIR <- list(...)$colours
} }
if (length(colours_SIR) == 1) { colours_SIR <- expand_SIR_colours(colours_SIR, unname = FALSE)
colours_SIR <- rep(colours_SIR, 4)
} else if (length(colours_SIR) == 3) {
colours_SIR <- c(colours_SIR[1], colours_SIR[1], colours_SIR[2], colours_SIR[3])
}
# behaviour when coming from ggplot_sir() # behaviour when coming from ggplot_sir()
if ("colours" %in% names(list(...))) { if ("colours" %in% names(list(...))) {
@@ -1502,3 +1485,39 @@ labels_sir_count <- function(position = NULL,
} }
) )
} }
expand_SIR_colours <- function(colours_SIR, unname = TRUE) {
sir_order <- c("S", "SDD", "I", "R", "SI", "IR")
if (is.null(names(colours_SIR))) {
if (length(colours_SIR) == 1) {
colours_SIR <- rep(colours_SIR, 4)
} else if (length(colours_SIR) == 3) {
# old method for AMR < 3.0.1 which allowed for 3 colours
# fill in green for SDD as extra colour
colours_SIR <- c(colours_SIR[1], colours_SIR[1], colours_SIR[2], colours_SIR[3])
}
if (length(colours_SIR) == 4) {
# add colours for SI (same as S) and IR (same as R)
colours_SIR <- c(colours_SIR[1:4], colours_SIR[1], colours_SIR[4])
}
names(colours_SIR) <- sir_order
} else {
# named input: match and reorder
stop_ifnot(
all(names(colours_SIR) %in% sir_order),
"Unknown names in `colours_SIR`. Expected any of: ", vector_or(levels(NA_sir_), quotes = FALSE, sort = FALSE), "."
)
if (length(colours_SIR) == 4) {
# add colours for SI (same as S) and IR (same as R)
colours_SIR <- c(colours_SIR[1:4], SI = unname(colours_SIR[1]), IR = unname(colours_SIR[4]))
}
colours_SIR <- colours_SIR[sir_order]
}
if (unname) {
colours_SIR <- unname(colours_SIR)
}
return(colours_SIR)
}

235
R/sir.R
View File

@@ -385,26 +385,15 @@ as.sir <- function(x, ...) {
UseMethod("as.sir") UseMethod("as.sir")
} }
as_sir_structure <- function(x, as_sir_structure <- function(x) {
guideline = NULL, int <- attr(x, "interpretation_details")
mo = NULL,
ab = NULL,
method = NULL,
ref_tbl = NULL,
ref_breakpoints = NULL) {
structure( structure(
factor(as.character(unlist(unname(x))), factor(as.character(unlist(unname(x))),
levels = c("S", "SDD", "I", "R", "NI"), levels = c("S", "SDD", "I", "R", "NI"),
ordered = TRUE ordered = TRUE
), ),
# TODO for #170 interpretation_details = int,
# guideline = guideline, class = c(if (!is.null(int)) "interpreted_sir" else NULL, "sir", "ordered", "factor")
# mo = mo,
# ab = ab,
# method = method,
# ref_tbl = ref_tbl,
# ref_breakpoints = ref_breakpoints,
class = c("sir", "ordered", "factor")
) )
} }
@@ -1649,9 +1638,11 @@ as_sir_method <- function(method_short,
breakpoint_S_R = vectorise_log_entry(NA_character_, length(rows)), breakpoint_S_R = vectorise_log_entry(NA_character_, length(rows)),
stringsAsFactors = FALSE stringsAsFactors = FALSE
) )
attr(new_sir, "interpretation_details") <- out
out <- subset(out, !is.na(input_given)) out <- subset(out, !is.na(input_given))
AMR_env$sir_interpretation_history <- rbind_AMR(AMR_env$sir_interpretation_history, out) AMR_env$sir_interpretation_history <- rbind_AMR(AMR_env$sir_interpretation_history, out)
notes <- c(notes, notes_current) notes <- c(notes, notes_current)
df[rows, "result"] <- new_sir
next next
} }
@@ -1827,6 +1818,7 @@ as_sir_method <- function(method_short,
breakpoint_S_R = vectorise_log_entry(paste0(breakpoints_current[, "breakpoint_S", drop = TRUE], "-", breakpoints_current[, "breakpoint_R", drop = TRUE]), length(rows)), breakpoint_S_R = vectorise_log_entry(paste0(breakpoints_current[, "breakpoint_S", drop = TRUE], "-", breakpoints_current[, "breakpoint_R", drop = TRUE]), length(rows)),
stringsAsFactors = FALSE stringsAsFactors = FALSE
) )
attr(new_sir, "interpretation_details") <- out
out <- subset(out, !is.na(input_given)) out <- subset(out, !is.na(input_given))
AMR_env$sir_interpretation_history <- rbind_AMR(AMR_env$sir_interpretation_history, out) AMR_env$sir_interpretation_history <- rbind_AMR(AMR_env$sir_interpretation_history, out)
} }
@@ -1871,14 +1863,26 @@ as_sir_method <- function(method_short,
new_part <- new_part[order(new_part$index), , drop = FALSE] new_part <- new_part[order(new_part$index), , drop = FALSE]
AMR_env$sir_interpretation_history <- rbind_AMR(old_part, new_part) AMR_env$sir_interpretation_history <- rbind_AMR(old_part, new_part)
df$result as_sir_structure(df$result)
} }
#' @rdname as.sir #' @rdname as.sir
#' @param sir_values SIR values that were interpreted from MIC or disk diffusion values using [as.sir()].
#' @param clean A [logical] to indicate whether previously stored results should be forgotten after returning the 'logbook' with results. #' @param clean A [logical] to indicate whether previously stored results should be forgotten after returning the 'logbook' with results.
#' @export #' @export
sir_interpretation_history <- function(clean = FALSE) { sir_interpretation_history <- function(sir_values = NULL, clean = FALSE) {
# for AMR v3.0.0 and lower, the first argument was `clean`, so allow `sir_interpretation_history(TRUE)` to keep working
if (is.logical(sir_values) && missing(clean)) {
clean <- sir_values
sir_values <- NULL
warning_("For `sir_interpretation_history()`, the `clean` argument is no longer the first argument, please update your code to explicitly state 'clean': `sir_interpretation_history(clean = ", clean, ")`.")
}
meet_criteria(sir_values, allow_class = "sir", allow_NULL = TRUE)
meet_criteria(clean, allow_class = "logical", has_length = 1) meet_criteria(clean, allow_class = "logical", has_length = 1)
if (!is.null(sir_values)) {
out <- attr(sir_values, "interpretation_details")
} else {
out <- AMR_env$sir_interpretation_history out <- AMR_env$sir_interpretation_history
out <- out[which(!is.na(out$datetime)), , drop = FALSE] out <- out[which(!is.na(out$datetime)), , drop = FALSE]
out$outcome <- as.sir(out$outcome) out$outcome <- as.sir(out$outcome)
@@ -1886,6 +1890,7 @@ sir_interpretation_history <- function(clean = FALSE) {
if (isTRUE(clean)) { if (isTRUE(clean)) {
AMR_env$sir_interpretation_history <- AMR_env$sir_interpretation_history[0, , drop = FALSE] AMR_env$sir_interpretation_history <- AMR_env$sir_interpretation_history[0, , drop = FALSE]
} }
}
if (pkg_is_available("tibble")) { if (pkg_is_available("tibble")) {
out <- import_fn("as_tibble", "tibble")(out) out <- import_fn("as_tibble", "tibble")(out)
} }
@@ -2008,21 +2013,60 @@ get_skimmers.sir <- function(column) {
#' @export #' @export
#' @noRd #' @noRd
print.sir <- function(x, ...) { print.sir <- function(x, ...) {
x_name <- deparse(substitute(x))
cat("Class 'sir'\n") cat("Class 'sir'\n")
# TODO for #170
# if (!is.null(attributes(x)$guideline) && !all(is.na(attributes(x)$guideline))) {
# cat(font_blue(word_wrap("These values were interpreted using ",
# font_bold(vector_and(attributes(x)$guideline, quotes = FALSE)),
# " based on ",
# vector_and(attributes(x)$method, quotes = FALSE),
# " values. ",
# "Use `sir_interpretation_history(", x_name, ")` to return a full logbook.")))
# cat("\n")
# }
print(as.character(x), quote = FALSE) print(as.character(x), quote = FALSE)
} }
#' @method print interpreted_sir
#' @export
#' @noRd
print.interpreted_sir <- function(x, ...) {
cat("Class 'sir'\n")
print(as.character(x), quote = FALSE)
if (length(x) == 0) {
return(invisible())
}
int <- attr(x, "interpretation_details")
if (NROW(int) == 0) {
if (length(x) == 1) {
cat(font_blue(word_wrap("Source data were lost for this interpreted value.")))
} else {
cat(font_blue(word_wrap("Source data were lost for these interpreted values.")))
}
} else {
relevant_cols <- int[, c("guideline", "method", "ab", "mo"), drop = FALSE]
relevant_cols <- unique(relevant_cols)
vals1_plural <- ifelse(length(x) == 1, "This value was", "These values were")
vals2_plural <- ifelse(length(x) == 1, "value", "values")
method_fn <- ifelse(relevant_cols$method == "MIC", "MIC", "disk diffusion")
if (NROW(relevant_cols) == 1) {
in_host <- ifelse(relevant_cols$host == "human", "", paste0(" in ", relevant_cols$host))
cat(font_blue(word_wrap(
vals1_plural, " interpreted using ",
relevant_cols$guideline,
" based on the ",
method_fn,
" ", vals2_plural, " for ",
ab_name(relevant_cols$ab, language = NULL, info = FALSE, tolower = TRUE), " in ",
italicise_taxonomy(mo_name(relevant_cols$mo, language = NULL, info = FALSE), type = "ansi"),
in_host,
"."
)))
} else {
cat(font_blue(word_wrap(
vals1_plural, " interpreted using ",
vector_and(relevant_cols$guideline, quotes = FALSE),
" based on ",
vector_and(method_fn, quotes = FALSE),
" ", vals2_plural, "."
)))
}
cat(font_blue(word_wrap("\nUse `sir_interpretation_history()` on this object to return a full logbook.\n")))
}
}
#' @method as.double sir #' @method as.double sir
#' @export #' @export
@@ -2078,51 +2122,132 @@ summary.sir <- function(object, ...) {
value value
} }
#' @method [ sir
#' @export
#' @noRd
"[.sir" <- function(x, ...) {
y <- NextMethod()
det <- attr(x, "interpretation_details")
if (!is.null(det)) {
subset_idx <- seq_along(x)[...]
# safer than relying on implicit eval inside NextMethod()
attr(y, "interpretation_details") <- det[subset_idx, , drop = FALSE]
}
y
}
#' @method [[ sir
#' @export
#' @noRd
"[[.sir" <- function(x, i, ...) {
if (length(i) != 1L) {
stop("attempt to select more than one element with [[.", call. = FALSE)
}
x[i] # calls `[.sir`, ensures attr alignment
}
#' @method [<- sir #' @method [<- sir
#' @export #' @export
#' @noRd #' @noRd
"[<-.sir" <- function(i, j, ..., value) { "[<-.sir" <- function(i, j, ..., value) {
value <- as.sir(value) value <- as.sir(value)
y <- NextMethod() y <- NextMethod()
attributes(y) <- attributes(i)
old_det <- attr(i, "interpretation_details")
new_det <- attr(value, "interpretation_details")
len_y <- length(y)
# Neither i nor value have details -> do nothing
if (is.null(old_det) && is.null(new_det)) {
return(y)
}
# Start building full_det as copy of old_det or empty
full_det <- if (!is.null(old_det)) old_det else data.frame(row = seq_along(i))
# Ensure full_det has correct row count and order
if (nrow(full_det) != length(i)) {
attr(y, "interpretation_details") <- NULL
return(y)
}
# Which rows are being assigned?
assign_idx <- if (missing(j)) seq_along(i) else j
assign_idx <- as.integer(assign_idx)
# If new_det is missing or too short, fill it
if (is.null(new_det)) {
new_det <- data.frame(row = assign_idx)
} else if (nrow(new_det) != length(value)) {
new_det <- data.frame(row = assign_idx)
}
# Add temporary .row to track positions
full_det$.row <- seq_len(nrow(full_det))
new_det$.row <- assign_idx
# Replace old rows with new rows
full_det <- rbind(
subset(full_det, !.row %in% assign_idx),
new_det
)
full_det <- full_det[order(full_det$.row), , drop = FALSE]
full_det$.row <- NULL
# Clean up: ensure right number of rows
if (nrow(full_det) == len_y) {
attr(y, "interpretation_details") <- full_det
} else {
attr(y, "interpretation_details") <- NULL
}
y y
} }
#' @method [[<- sir #' @method [[<- sir
#' @export #' @export
#' @noRd #' @noRd
"[[<-.sir" <- function(i, j, ..., value) { "[[<-.sir" <- function(i, j, ..., value) {
value <- as.sir(value) if (!is.null(det) && length(i) == 1 && nrow(det) >= i) {
y <- NextMethod() i[j] <- value
attributes(y) <- attributes(i) i
y } else {
NextMethod()
}
} }
#' @method c sir #' @method c sir
#' @export #' @export
#' @noRd #' @noRd
c.sir <- function(...) { c.sir <- function(..., recursive = FALSE) {
lst <- list(...) lst <- lapply(
list(...),
function(x) {
list(
values = as.character(x),
interpretation_details = attr(x, "interpretation_details")
)
}
)
x <- unlist(lapply(lst, `[[`, "values"), use.names = FALSE)
details <- lapply(lst, `[[`, "interpretation_details")
has_details <- vapply(details, is.data.frame, logical(1))
if (!any(has_details)) {
return(as_sir_structure(x))
}
# TODO for #170 # Pre-allocate details (no Map, no matrix allocation)
# guideline <- vapply(FUN.VALUE = character(1), lst, function(x) attributes(x)$guideline %or% NA_character_) combined_details <- do.call(rbind, lapply(seq_along(details), function(i) {
# mo <- vapply(FUN.VALUE = character(1), lst, function(x) attributes(x)$mo %or% NA_character_) d <- details[[i]]
# ab <- vapply(FUN.VALUE = character(1), lst, function(x) attributes(x)$ab %or% NA_character_) if (is.null(d)) {
# method <- vapply(FUN.VALUE = character(1), lst, function(x) attributes(x)$method %or% NA_character_) # generate NA rows of correct length, but fast
# ref_tbl <- vapply(FUN.VALUE = character(1), lst, function(x) attributes(x)$ref_tbl %or% NA_character_) n <- length(details[[i]])
# ref_breakpoints <- vapply(FUN.VALUE = character(1), lst, function(x) attributes(x)$ref_breakpoints %or% NA_character_) as.data.frame(matrix(NA, nrow = n, ncol = 0))
} else {
d
}
}))
out <- as.sir(unlist(lapply(list(...), as.character))) attr(x, "interpretation_details") <- combined_details
as_sir_structure(x)
# TODO for #170
# if (!all(is.na(guideline))) {
# attributes(out)$guideline <- guideline
# attributes(out)$mo <- mo
# attributes(out)$ab <- ab
# attributes(out)$method <- method
# attributes(out)$ref_tbl <- ref_tbl
# attributes(out)$ref_breakpoints <- ref_breakpoints
# }
out
} }
#' @method unique sir #' @method unique sir

View File

@@ -19,7 +19,7 @@
#' @keywords internal #' @keywords internal
#' @export #' @export
#' @examples #' @examples
#' library(tidymodels) #' if (require("tidymodels")) {
#' #'
#' # The below approach formed the basis for this paper: DOI 10.3389/fmicb.2025.1582703 #' # The below approach formed the basis for this paper: DOI 10.3389/fmicb.2025.1582703
#' # Presence of ESBL genes was predicted based on raw MIC values. #' # Presence of ESBL genes was predicted based on raw MIC values.
@@ -39,10 +39,14 @@
#' #'
#' # Create and prep a recipe with MIC log2 transformation #' # Create and prep a recipe with MIC log2 transformation
#' mic_recipe <- recipe(esbl ~ ., data = training_data) %>% #' mic_recipe <- recipe(esbl ~ ., data = training_data) %>%
#'
#' # Optionally remove non-predictive variables #' # Optionally remove non-predictive variables
#' remove_role(genus, old_role = "predictor") %>% #' remove_role(genus, old_role = "predictor") %>%
#'
#' # Apply the log2 transformation to all MIC predictors #' # Apply the log2 transformation to all MIC predictors
#' step_mic_log2(all_mic_predictors()) %>% #' step_mic_log2(all_mic_predictors()) %>%
#'
#' # And apply the preparation steps
#' prep() #' prep()
#' #'
#' # View prepped recipe #' # View prepped recipe
@@ -65,10 +69,9 @@
#' our_metrics <- metric_set(accuracy, kap, ppv, npv) #' our_metrics <- metric_set(accuracy, kap, ppv, npv)
#' metrics <- our_metrics(predictions, truth = esbl, estimate = .pred_class) #' metrics <- our_metrics(predictions, truth = esbl, estimate = .pred_class)
#' #'
#' # Show performance: #' # Show performance
#' # - negative predictive value (NPV) of ~98%
#' # - positive predictive value (PPV) of ~94%
#' metrics #' metrics
#' }
all_mic <- function() { all_mic <- function() {
x <- tidymodels_amr_select(levels(NA_mic_)) x <- tidymodels_amr_select(levels(NA_mic_))
names(x) names(x)

View File

@@ -56,7 +56,8 @@ os.makedirs(r_lib_path, exist_ok=True)
os.environ['R_LIBS_SITE'] = r_lib_path os.environ['R_LIBS_SITE'] = r_lib_path
from rpy2 import robjects from rpy2 import robjects
from rpy2.robjects import pandas2ri from rpy2.robjects.conversion import localconverter
from rpy2.robjects import default_converter, numpy2ri, pandas2ri
from rpy2.robjects.packages import importr, isinstalled from rpy2.robjects.packages import importr, isinstalled
# Import base and utils # Import base and utils
@@ -94,27 +95,26 @@ if r_amr_version != python_amr_version:
print(f"AMR: Setting up R environment and AMR datasets...", flush=True) print(f"AMR: Setting up R environment and AMR datasets...", flush=True)
# Activate the automatic conversion between R and pandas DataFrames # Activate the automatic conversion between R and pandas DataFrames
pandas2ri.activate() with localconverter(default_converter + numpy2ri.converter + pandas2ri.converter):
# example_isolates
# example_isolates example_isolates = robjects.r('''
example_isolates = pandas2ri.rpy2py(robjects.r(''' df <- AMR::example_isolates
df <- AMR::example_isolates df[] <- lapply(df, function(x) {
df[] <- lapply(df, function(x) {
if (inherits(x, c("Date", "POSIXt", "factor"))) { if (inherits(x, c("Date", "POSIXt", "factor"))) {
as.character(x) as.character(x)
} else { } else {
x x
} }
}) })
df <- df[, !sapply(df, is.list)] df <- df[, !sapply(df, is.list)]
df df
''')) ''')
example_isolates['date'] = pd.to_datetime(example_isolates['date']) example_isolates['date'] = pd.to_datetime(example_isolates['date'])
# microorganisms # microorganisms
microorganisms = pandas2ri.rpy2py(robjects.r('AMR::microorganisms[, !sapply(AMR::microorganisms, is.list)]')) microorganisms = robjects.r('AMR::microorganisms[, !sapply(AMR::microorganisms, is.list)]')
antimicrobials = pandas2ri.rpy2py(robjects.r('AMR::antimicrobials[, !sapply(AMR::antimicrobials, is.list)]')) antimicrobials = robjects.r('AMR::antimicrobials[, !sapply(AMR::antimicrobials, is.list)]')
clinical_breakpoints = pandas2ri.rpy2py(robjects.r('AMR::clinical_breakpoints[, !sapply(AMR::clinical_breakpoints, is.list)]')) clinical_breakpoints = robjects.r('AMR::clinical_breakpoints[, !sapply(AMR::clinical_breakpoints, is.list)]')
base.options(warn = 0) base.options(warn = 0)
@@ -129,16 +129,15 @@ echo "from .datasets import clinical_breakpoints" >> $init_file
# Write header to the functions Python file, including the convert_to_python function # Write header to the functions Python file, including the convert_to_python function
cat <<EOL > "$functions_file" cat <<EOL > "$functions_file"
import functools
import rpy2.robjects as robjects import rpy2.robjects as robjects
from rpy2.robjects.packages import importr from rpy2.robjects.packages import importr
from rpy2.robjects.vectors import StrVector, FactorVector, IntVector, FloatVector, DataFrame from rpy2.robjects.vectors import StrVector, FactorVector, IntVector, FloatVector, DataFrame
from rpy2.robjects import pandas2ri from rpy2.robjects.conversion import localconverter
from rpy2.robjects import default_converter, numpy2ri, pandas2ri
import pandas as pd import pandas as pd
import numpy as np import numpy as np
# Activate automatic conversion between R data frames and pandas data frames
pandas2ri.activate()
# Import the AMR R package # Import the AMR R package
amr_r = importr('AMR') amr_r = importr('AMR')
@@ -156,10 +155,8 @@ def convert_to_python(r_output):
return list(r_output) # Convert to a Python list of integers or floats return list(r_output) # Convert to a Python list of integers or floats
# Check if it's a pandas-compatible R data frame # Check if it's a pandas-compatible R data frame
elif isinstance(r_output, pd.DataFrame): elif isinstance(r_output, (pd.DataFrame, DataFrame)):
return r_output # Return as pandas DataFrame (already converted by pandas2ri) return r_output # Return as pandas DataFrame (already converted by pandas2ri)
elif isinstance(r_output, DataFrame):
return pandas2ri.rpy2py(r_output) # Return as pandas DataFrame
# Check if the input is a NumPy array and has a string data type # Check if the input is a NumPy array and has a string data type
if isinstance(r_output, np.ndarray) and np.issubdtype(r_output.dtype, np.str_): if isinstance(r_output, np.ndarray) and np.issubdtype(r_output.dtype, np.str_):
@@ -167,6 +164,15 @@ def convert_to_python(r_output):
# Fall-back # Fall-back
return r_output return r_output
def r_to_python(r_func):
"""Decorator that runs an rpy2 function under a localconverter
and then applies convert_to_python to its output."""
@functools.wraps(r_func)
def wrapper(*args, **kwargs):
with localconverter(default_converter + numpy2ri.converter + pandas2ri.converter):
return convert_to_python(r_func(*args, **kwargs))
return wrapper
EOL EOL
# Directory where the .Rd files are stored (update path as needed) # Directory where the .Rd files are stored (update path as needed)
@@ -246,10 +252,11 @@ for rd_file in "$rd_dir"/*.Rd; do
gsub("FALSE", "False", func_args) gsub("FALSE", "False", func_args)
gsub("NULL", "None", func_args) gsub("NULL", "None", func_args)
# Write the Python function definition to the output file # Write the Python function definition to the output file, using decorator
print "@r_to_python" >> "'"$functions_file"'"
print "def " func_name_py "(" func_args "):" >> "'"$functions_file"'" print "def " func_name_py "(" func_args "):" >> "'"$functions_file"'"
print " \"\"\"Please see our website of the R package for the full manual: https://amr-for-r.org\"\"\"" >> "'"$functions_file"'" print " \"\"\"Please see our website of the R package for the full manual: https://amr-for-r.org\"\"\"" >> "'"$functions_file"'"
print " return convert_to_python(amr_r." func_name_py "(" func_args "))" >> "'"$functions_file"'" print " return amr_r." func_name_py "(" func_args ")" >> "'"$functions_file"'"
print "from .functions import " func_name_py >> "'"$init_file"'" print "from .functions import " func_name_py >> "'"$init_file"'"
} }

View File

@@ -133,7 +133,7 @@ ggplot(data.frame(mic = some_mic_values,
sir = interpretation), sir = interpretation),
aes(x = group, y = mic, colour = sir)) + aes(x = group, y = mic, colour = sir)) +
theme_minimal() + theme_minimal() +
geom_boxplot(fill = NA, colour = "grey") + geom_boxplot(fill = NA, colour = "grey30") +
geom_jitter(width = 0.25) + geom_jitter(width = 0.25) +
# NEW scale function: plot MIC values to x, y, colour or fill # NEW scale function: plot MIC values to x, y, colour or fill

View File

@@ -171,14 +171,14 @@ example_isolates %>%
select(bacteria, select(bacteria,
aminoglycosides(), aminoglycosides(),
carbapenems()) carbapenems())
#> Using column 'mo' as input for mo_fullname() #> Using column 'mo' as input for `mo_fullname()`
#> Using column 'mo' as input for mo_is_gram_negative() #> Using column 'mo' as input for `mo_is_gram_negative()`
#> Using column 'mo' as input for mo_is_intrinsic_resistant() #> Using column 'mo' as input for `mo_is_intrinsic_resistant()`
#> Determining intrinsic resistance based on 'EUCAST Expected Resistant #> Determining intrinsic resistance based on 'EUCAST Expected Resistant
#> Phenotypes' v1.2 (2023). This note will be shown once per session. #> Phenotypes' v1.2 (2023). This note will be shown once per session.
#> For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB' #> For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin) #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
#> For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem) #> For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
#> # A tibble: 35 × 7 #> # A tibble: 35 × 7
#> bacteria GEN TOB AMK KAN IPM MEM #> bacteria GEN TOB AMK KAN IPM MEM
#> <chr> <sir> <sir> <sir> <sir> <sir> <sir> #> <chr> <sir> <sir> <sir> <sir> <sir> <sir>
@@ -215,9 +215,9 @@ output format automatically (such as markdown, LaTeX, HTML, etc.).
``` r ``` r
antibiogram(example_isolates, antibiogram(example_isolates,
antimicrobials = c(aminoglycosides(), carbapenems())) antimicrobials = c(aminoglycosides(), carbapenems()))
#> For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB' #> For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin) #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
#> For carbapenems() using columns 'IPM' (imipenem) and 'MEM' (meropenem) #> For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
``` ```
| Pathogen | Amikacin | Gentamicin | Imipenem | Kanamycin | Meropenem | Tobramycin | | Pathogen | Amikacin | Gentamicin | Imipenem | Kanamycin | Meropenem | Tobramycin |
@@ -289,7 +289,7 @@ ggplot(data.frame(mic = some_mic_values,
sir = interpretation), sir = interpretation),
aes(x = group, y = mic, colour = sir)) + aes(x = group, y = mic, colour = sir)) +
theme_minimal() + theme_minimal() +
geom_boxplot(fill = NA, colour = "grey") + geom_boxplot(fill = NA, colour = "grey30") +
geom_jitter(width = 0.25) + geom_jitter(width = 0.25) +
# NEW scale function: plot MIC values to x, y, colour or fill # NEW scale function: plot MIC values to x, y, colour or fill
@@ -340,15 +340,15 @@ out <- example_isolates %>%
# calculate AMR using resistance(), over all aminoglycosides and polymyxins: # calculate AMR using resistance(), over all aminoglycosides and polymyxins:
summarise(across(c(aminoglycosides(), polymyxins()), summarise(across(c(aminoglycosides(), polymyxins()),
resistance)) resistance))
#> For aminoglycosides() using columns 'GEN' (gentamicin), 'TOB' #> For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin) #> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
#> For polymyxins() using column 'COL' (colistin) #> For `polymyxins()` using column 'COL' (colistin)
#> Warning: There was 1 warning in `summarise()`. #> Warning: There was 1 warning in `summarise()`.
#> In argument: `across(c(aminoglycosides(), polymyxins()), resistance)`. #> In argument: `across(c(aminoglycosides(), polymyxins()), resistance)`.
#> In group 3: `ward = "Outpatient"`. #> In group 3: `ward = "Outpatient"`.
#> Caused by warning: #> Caused by warning:
#> ! Introducing NA: only 23 results available for KAN in group: ward = #> ! Introducing NA: only 23 results available for KAN in group: ward =
#> "Outpatient" (minimum = 30). #> "Outpatient" (`minimum` = 30).
out out
#> # A tibble: 3 × 6 #> # A tibble: 3 × 6
#> ward GEN TOB AMK KAN COL #> ward GEN TOB AMK KAN COL

View File

@@ -4,20 +4,23 @@
\alias{age_groups} \alias{age_groups}
\title{Split Ages into Age Groups} \title{Split Ages into Age Groups}
\usage{ \usage{
age_groups(x, split_at = c(12, 25, 55, 75), na.rm = FALSE) age_groups(x, split_at = c(0, 12, 25, 55, 75), names = NULL,
na.rm = FALSE)
} }
\arguments{ \arguments{
\item{x}{Age, e.g. calculated with \code{\link[=age]{age()}}.} \item{x}{Age, e.g. calculated with \code{\link[=age]{age()}}.}
\item{split_at}{Values to split \code{x} at - the default is age groups 0-11, 12-24, 25-54, 55-74 and 75+. See \emph{Details}.} \item{split_at}{Values to split \code{x} at - the default is age groups 0-11, 12-24, 25-54, 55-74 and 75+. See \emph{Details}.}
\item{names}{Optional names to be given to the various age groups.}
\item{na.rm}{A \link{logical} to indicate whether missing values should be removed.} \item{na.rm}{A \link{logical} to indicate whether missing values should be removed.}
} }
\value{ \value{
Ordered \link{factor} Ordered \link{factor}
} }
\description{ \description{
Split ages into age groups defined by the \code{split} argument. This allows for easier demographic (antimicrobial resistance) analysis. Split ages into age groups defined by the \code{split} argument. This allows for easier demographic (antimicrobial resistance) analysis. The function returns an ordered \link{factor}.
} }
\details{ \details{
To split ages, the input for the \code{split_at} argument can be: To split ages, the input for the \code{split_at} argument can be:
@@ -41,6 +44,7 @@ age_groups(ages, 50)
# split into 0-19, 20-49 and 50+ # split into 0-19, 20-49 and 50+
age_groups(ages, c(20, 50)) age_groups(ages, c(20, 50))
age_groups(ages, c(20, 50), names = c("Under 20 years", "20 to 50 years", "Over 50 years"))
# split into groups of ten years # split into groups of ten years
age_groups(ages, 1:10 * 10) age_groups(ages, 1:10 * 10)

View File

@@ -65,56 +65,59 @@ Pre-processing pipeline steps include:
These steps integrate with \code{recipes::recipe()} and work like standard preprocessing steps. They are useful for preparing data for modelling, especially with classification models. These steps integrate with \code{recipes::recipe()} and work like standard preprocessing steps. They are useful for preparing data for modelling, especially with classification models.
} }
\examples{ \examples{
library(tidymodels) if (require("tidymodels")) {
# The below approach formed the basis for this paper: DOI 10.3389/fmicb.2025.1582703 # The below approach formed the basis for this paper: DOI 10.3389/fmicb.2025.1582703
# Presence of ESBL genes was predicted based on raw MIC values. # Presence of ESBL genes was predicted based on raw MIC values.
# example data set in the AMR package # example data set in the AMR package
esbl_isolates esbl_isolates
# Prepare a binary outcome and convert to ordered factor # Prepare a binary outcome and convert to ordered factor
data <- esbl_isolates \%>\% data <- esbl_isolates \%>\%
mutate(esbl = factor(esbl, levels = c(FALSE, TRUE), ordered = TRUE)) mutate(esbl = factor(esbl, levels = c(FALSE, TRUE), ordered = TRUE))
# Split into training and testing sets # Split into training and testing sets
split <- initial_split(data) split <- initial_split(data)
training_data <- training(split) training_data <- training(split)
testing_data <- testing(split) testing_data <- testing(split)
# Create and prep a recipe with MIC log2 transformation
mic_recipe <- recipe(esbl ~ ., data = training_data) \%>\%
# Create and prep a recipe with MIC log2 transformation
mic_recipe <- recipe(esbl ~ ., data = training_data) \%>\%
# Optionally remove non-predictive variables # Optionally remove non-predictive variables
remove_role(genus, old_role = "predictor") \%>\% remove_role(genus, old_role = "predictor") \%>\%
# Apply the log2 transformation to all MIC predictors # Apply the log2 transformation to all MIC predictors
step_mic_log2(all_mic_predictors()) \%>\% step_mic_log2(all_mic_predictors()) \%>\%
# And apply the preparation steps
prep() prep()
# View prepped recipe # View prepped recipe
mic_recipe mic_recipe
# Apply the recipe to training and testing data # Apply the recipe to training and testing data
out_training <- bake(mic_recipe, new_data = NULL) out_training <- bake(mic_recipe, new_data = NULL)
out_testing <- bake(mic_recipe, new_data = testing_data) out_testing <- bake(mic_recipe, new_data = testing_data)
# Fit a logistic regression model # Fit a logistic regression model
fitted <- logistic_reg(mode = "classification") \%>\% fitted <- logistic_reg(mode = "classification") \%>\%
set_engine("glm") \%>\% set_engine("glm") \%>\%
fit(esbl ~ ., data = out_training) fit(esbl ~ ., data = out_training)
# Generate predictions on the test set # Generate predictions on the test set
predictions <- predict(fitted, out_testing) \%>\% predictions <- predict(fitted, out_testing) \%>\%
bind_cols(out_testing) bind_cols(out_testing)
# Evaluate predictions using standard classification metrics # Evaluate predictions using standard classification metrics
our_metrics <- metric_set(accuracy, kap, ppv, npv) our_metrics <- metric_set(accuracy, kap, ppv, npv)
metrics <- our_metrics(predictions, truth = esbl, estimate = .pred_class) metrics <- our_metrics(predictions, truth = esbl, estimate = .pred_class)
# Show performance: # Show performance
# - negative predictive value (NPV) of ~98\% metrics
# - positive predictive value (PPV) of ~94\% }
metrics
} }
\seealso{ \seealso{
\code{\link[recipes:recipe]{recipes::recipe()}}, \code{\link[=as.mic]{as.mic()}}, \code{\link[=as.sir]{as.sir()}} \code{\link[recipes:recipe]{recipes::recipe()}}, \code{\link[=as.mic]{as.mic()}}, \code{\link[=as.sir]{as.sir()}}

View File

@@ -70,7 +70,7 @@ is_sir_eligible(x, threshold = 0.05)
language = get_AMR_locale(), verbose = FALSE, info = interactive(), language = get_AMR_locale(), verbose = FALSE, info = interactive(),
parallel = FALSE, max_cores = -1, conserve_capped_values = NULL) parallel = FALSE, max_cores = -1, conserve_capped_values = NULL)
sir_interpretation_history(clean = FALSE) sir_interpretation_history(sir_values = NULL, clean = FALSE)
} }
\arguments{ \arguments{
\item{x}{Vector of values (for class \code{\link{mic}}: MIC values in mg/L, for class \code{\link{disk}}: a disk diffusion radius in millimetres).} \item{x}{Vector of values (for class \code{\link{mic}}: MIC values in mg/L, for class \code{\link{disk}}: a disk diffusion radius in millimetres).}
@@ -147,6 +147,8 @@ The default \code{"standard"} setting ensures cautious handling of uncertain val
\item{max_cores}{Maximum number of cores to use if \code{parallel = TRUE}. Use a negative value to subtract that number from the available number of cores, e.g. a value of \code{-2} on an 8-core machine means that at most 6 cores will be used. Defaults to \code{-1}. There will never be used more cores than variables to analyse. The available number of cores are detected using \code{\link[parallelly:availableCores]{parallelly::availableCores()}} if that package is installed, and base \R's \code{\link[parallel:detectCores]{parallel::detectCores()}} otherwise.} \item{max_cores}{Maximum number of cores to use if \code{parallel = TRUE}. Use a negative value to subtract that number from the available number of cores, e.g. a value of \code{-2} on an 8-core machine means that at most 6 cores will be used. Defaults to \code{-1}. There will never be used more cores than variables to analyse. The available number of cores are detected using \code{\link[parallelly:availableCores]{parallelly::availableCores()}} if that package is installed, and base \R's \code{\link[parallel:detectCores]{parallel::detectCores()}} otherwise.}
\item{sir_values}{SIR values that were interpreted from MIC or disk diffusion values using \code{\link[=as.sir]{as.sir()}}.}
\item{clean}{A \link{logical} to indicate whether previously stored results should be forgotten after returning the 'logbook' with results.} \item{clean}{A \link{logical} to indicate whether previously stored results should be forgotten after returning the 'logbook' with results.}
} }
\value{ \value{

View File

@@ -9,7 +9,7 @@ ggplot_sir(data, position = NULL, x = "antibiotic",
fill = "interpretation", facet = NULL, breaks = seq(0, 1, 0.1), fill = "interpretation", facet = NULL, breaks = seq(0, 1, 0.1),
limits = NULL, translate_ab = "name", combine_SI = TRUE, limits = NULL, translate_ab = "name", combine_SI = TRUE,
minimum = 30, language = get_AMR_locale(), nrow = NULL, colours = c(S minimum = 30, language = get_AMR_locale(), nrow = NULL, colours = c(S
= "#3CAEA3", SI = "#3CAEA3", SDD = "#8FD6C4", I = "#F6D55C", IR = "#ED553B", = "#3CAEA3", SDD = "#8FD6C4", SI = "#3CAEA3", I = "#F6D55C", IR = "#ED553B",
R = "#ED553B"), datalabels = TRUE, datalabels.size = 2.5, R = "#ED553B"), datalabels = TRUE, datalabels.size = 2.5,
datalabels.colour = "grey15", title = NULL, subtitle = NULL, datalabels.colour = "grey15", title = NULL, subtitle = NULL,
caption = NULL, x.title = "Antimicrobial", y.title = "Proportion", ...) caption = NULL, x.title = "Antimicrobial", y.title = "Proportion", ...)

View File

@@ -210,6 +210,10 @@ if (require("ggplot2")) {
# when providing the microorganism and antibiotic, colours will show interpretations: # when providing the microorganism and antibiotic, colours will show interpretations:
autoplot(some_mic_values, mo = "Escherichia coli", ab = "cipro") autoplot(some_mic_values, mo = "Escherichia coli", ab = "cipro")
} }
if (require("ggplot2")) {
autoplot(some_mic_values, mo = "Staph aureus", ab = "Ceftaroline", guideline = "CLSI")
}
if (require("ggplot2")) { if (require("ggplot2")) {
# support for 27 languages, various guidelines, and many options # support for 27 languages, various guidelines, and many options
autoplot(some_disk_values, autoplot(some_disk_values,
@@ -267,7 +271,7 @@ if (require("ggplot2")) {
aes(group, mic) aes(group, mic)
) + ) +
geom_boxplot() + geom_boxplot() +
geom_violin(linetype = 2, colour = "grey", fill = NA) + geom_violin(linetype = 2, colour = "grey30", fill = NA) +
scale_y_mic() scale_y_mic()
} }
if (require("ggplot2")) { if (require("ggplot2")) {
@@ -279,7 +283,7 @@ if (require("ggplot2")) {
aes(group, mic) aes(group, mic)
) + ) +
geom_boxplot() + geom_boxplot() +
geom_violin(linetype = 2, colour = "grey", fill = NA) + geom_violin(linetype = 2, colour = "grey30", fill = NA) +
scale_y_mic(mic_range = c(NA, 0.25)) scale_y_mic(mic_range = c(NA, 0.25))
} }
@@ -312,7 +316,7 @@ if (require("ggplot2")) {
aes(x = group, y = mic, colour = sir) aes(x = group, y = mic, colour = sir)
) + ) +
theme_minimal() + theme_minimal() +
geom_boxplot(fill = NA, colour = "grey") + geom_boxplot(fill = NA, colour = "grey30") +
geom_jitter(width = 0.25) geom_jitter(width = 0.25)
plain plain

View File

@@ -190,6 +190,15 @@ this shows on top of every sidebar to the right
} }
} }
.template-reference-topic h3,
.template-reference-topic h3 code {
color: var(--amr-green-dark) !important;
}
.template-reference-topic h3 {
font-weight: normal;
margin-top: 2rem;
}
/* replace 'Developers' with 'Maintainers' */ /* replace 'Developers' with 'Maintainers' */
.developers h2 { .developers h2 {
display: none; display: none;