<!DOCTYPE html> <!-- Generated by pkgdown: do not edit by hand --><html lang="en"> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>How to conduct principal component analysis (PCA) for AMR • AMR (for R)</title> <!-- favicons --><link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png"> <link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png"> <link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png"> <link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png"> <!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link href="https://cdnjs.cloudflare.com/ajax/libs/bootswatch/3.4.0/flatly/bootstrap.min.css" rel="stylesheet" crossorigin="anonymous"> <script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../bootstrap-toc.css"> <script src="../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"> <!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"> <script src="../pkgdown.js"></script><link href="../extra.css" rel="stylesheet"> <script src="../extra.js"></script><meta property="og:title" content="How to conduct principal component analysis (PCA) for AMR"> <meta property="og:description" content="AMR"> <meta property="og:image" content="https://msberends.github.io/AMR/logo.png"> <!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> <![endif]--> </head> <body data-spy="scroll" data-target="#toc"> <div class="container template-article"> <header><div class="navbar navbar-default navbar-fixed-top" role="navigation"> <div class="container"> <div class="navbar-header"> <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">AMR (for R)</a> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Latest development version">1.6.0.9011</span> </span> </div> <div id="navbar" class="navbar-collapse collapse"> <ul class="nav navbar-nav"> <li> <a href="../index.html"> <span class="fa fa-home"></span> Home </a> </li> <li class="dropdown"> <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false"> <span class="fa fa-question-circle"></span> How to <span class="caret"></span> </a> <ul class="dropdown-menu" role="menu"> <li> <a href="../articles/AMR.html"> <span class="fa fa-directions"></span> Conduct AMR analysis </a> </li> <li> <a href="../articles/resistance_predict.html"> <span class="fa fa-dice"></span> Predict antimicrobial resistance </a> </li> <li> <a href="../articles/datasets.html"> <span class="fa fa-database"></span> Data sets for download / own use </a> </li> <li> <a href="../articles/PCA.html"> <span class="fa fa-compress"></span> Conduct principal component analysis for AMR </a> </li> <li> <a href="../articles/MDR.html"> <span class="fa fa-skull-crossbones"></span> Determine multi-drug resistance (MDR) </a> </li> <li> <a href="../articles/WHONET.html"> <span class="fa fa-globe-americas"></span> Work with WHONET data </a> </li> <li> <a href="../articles/SPSS.html"> <span class="fa fa-file-upload"></span> Import data from SPSS/SAS/Stata </a> </li> <li> <a href="../articles/EUCAST.html"> <span class="fa fa-exchange-alt"></span> Apply EUCAST rules </a> </li> <li> <a href="../reference/mo_property.html"> <span class="fa fa-bug"></span> Get properties of a microorganism </a> </li> <li> <a href="../reference/ab_property.html"> <span class="fa fa-capsules"></span> Get properties of an antibiotic </a> </li> <li> <a href="../articles/benchmarks.html"> <span class="fa fa-shipping-fast"></span> Other: benchmarks </a> </li> </ul> </li> <li> <a href="../reference/index.html"> <span class="fa fa-book-open"></span> Manual </a> </li> <li> <a href="../authors.html"> <span class="fa fa-users"></span> Authors </a> </li> <li> <a href="../news/index.html"> <span class="far fa far fa-newspaper"></span> Changelog </a> </li> </ul> <ul class="nav navbar-nav navbar-right"> <li> <a href="https://github.com/msberends/AMR"> <span class="fab fa fab fa-github"></span> Source Code </a> </li> <li> <a href="../survey.html"> <span class="fa fa-clipboard-list"></span> Survey </a> </li> </ul> </div> <!--/.nav-collapse --> </div> <!--/.container --> </div> <!--/.navbar --> </header><link href="PCA_files/anchor-sections-1.0/anchor-sections.css" rel="stylesheet"> <script src="PCA_files/anchor-sections-1.0/anchor-sections.js"></script><div class="row"> <div class="col-md-9 contents"> <div class="page-header toc-ignore"> <h1 data-toc-skip>How to conduct principal component analysis (PCA) for AMR</h1> <small class="dont-index">Source: <a href="https://github.com/msberends/AMR/blob/master/vignettes/PCA.Rmd"><code>vignettes/PCA.Rmd</code></a></small> <div class="hidden name"><code>PCA.Rmd</code></div> </div> <p><strong>NOTE: This page will be updated soon, as the pca() function is currently being developed.</strong></p> <div id="introduction" class="section level1"> <h1 class="hasAnchor"> <a href="#introduction" class="anchor"></a>Introduction</h1> </div> <div id="transforming" class="section level1"> <h1 class="hasAnchor"> <a href="#transforming" class="anchor"></a>Transforming</h1> <p>For PCA, we need to transform our AMR data first. This is what the <code>example_isolates</code> data set in this package looks like:</p> <div class="sourceCode" id="cb1"><pre class="downlit"> <span class="kw"><a href="https://rdrr.io/r/base/library.html">library</a></span><span class="op">(</span><span class="va"><a href="https://msberends.github.io/AMR/">AMR</a></span><span class="op">)</span> <span class="kw"><a href="https://rdrr.io/r/base/library.html">library</a></span><span class="op">(</span><span class="va"><a href="https://dplyr.tidyverse.org">dplyr</a></span><span class="op">)</span> <span class="fu"><a href="https://tibble.tidyverse.org/reference/glimpse.html">glimpse</a></span><span class="op">(</span><span class="va">example_isolates</span><span class="op">)</span> <span class="co"># Rows: 2,000</span> <span class="co"># Columns: 49</span> <span class="co"># $ date <date> 2002-01-02, 2002-01-03, 2002-01-07, 2002-01-07, 2002…</span> <span class="co"># $ hospital_id <fct> D, D, B, B, B, B, D, D, B, B, D, D, D, D, D, B, B, B,…</span> <span class="co"># $ ward_icu <lgl> FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, T…</span> <span class="co"># $ ward_clinical <lgl> TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, F…</span> <span class="co"># $ ward_outpatient <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALS…</span> <span class="co"># $ age <dbl> 65, 65, 45, 45, 45, 45, 78, 78, 45, 79, 67, 67, 71, 7…</span> <span class="co"># $ gender <chr> "F", "F", "F", "F", "F", "F", "M", "M", "F", "F", "M"…</span> <span class="co"># $ patient_id <chr> "A77334", "A77334", "067927", "067927", "067927", "06…</span> <span class="co"># $ mo <mo> "B_ESCHR_COLI", "B_ESCHR_COLI", "B_STPHY_EPDR", "B_STP…</span> <span class="co"># $ PEN <rsi> R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R,…</span> <span class="co"># $ OXA <rsi> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span> <span class="co"># $ FLC <rsi> NA, NA, R, R, R, R, S, S, R, S, S, S, NA, NA, NA, NA,…</span> <span class="co"># $ AMX <rsi> NA, NA, NA, NA, NA, NA, R, R, NA, NA, NA, NA, NA, NA,…</span> <span class="co"># $ AMC <rsi> I, I, NA, NA, NA, NA, S, S, NA, NA, S, S, I, I, R, I,…</span> <span class="co"># $ AMP <rsi> NA, NA, NA, NA, NA, NA, R, R, NA, NA, NA, NA, NA, NA,…</span> <span class="co"># $ TZP <rsi> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span> <span class="co"># $ CZO <rsi> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span> <span class="co"># $ FEP <rsi> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span> <span class="co"># $ CXM <rsi> I, I, R, R, R, R, S, S, R, S, S, S, S, S, NA, S, S, R…</span> <span class="co"># $ FOX <rsi> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span> <span class="co"># $ CTX <rsi> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S,…</span> <span class="co"># $ CAZ <rsi> NA, NA, R, R, R, R, R, R, R, R, R, R, NA, NA, NA, S, …</span> <span class="co"># $ CRO <rsi> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S,…</span> <span class="co"># $ GEN <rsi> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span> <span class="co"># $ TOB <rsi> NA, NA, NA, NA, NA, NA, S, S, NA, NA, NA, NA, S, S, N…</span> <span class="co"># $ AMK <rsi> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span> <span class="co"># $ KAN <rsi> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span> <span class="co"># $ TMP <rsi> R, R, S, S, R, R, R, R, S, S, NA, NA, S, S, S, S, S, …</span> <span class="co"># $ SXT <rsi> R, R, S, S, NA, NA, NA, NA, S, S, NA, NA, S, S, S, S,…</span> <span class="co"># $ NIT <rsi> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span> <span class="co"># $ FOS <rsi> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span> <span class="co"># $ LNZ <rsi> R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R…</span> <span class="co"># $ CIP <rsi> NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, NA, NA, NA,…</span> <span class="co"># $ MFX <rsi> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span> <span class="co"># $ VAN <rsi> R, R, S, S, S, S, S, S, S, S, NA, NA, R, R, R, R, R, …</span> <span class="co"># $ TEC <rsi> R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R…</span> <span class="co"># $ TCY <rsi> R, R, S, S, S, S, S, S, S, I, S, S, NA, NA, I, R, R, …</span> <span class="co"># $ TGC <rsi> NA, NA, S, S, S, S, S, S, S, NA, S, S, NA, NA, NA, R,…</span> <span class="co"># $ DOX <rsi> NA, NA, S, S, S, S, S, S, S, NA, S, S, NA, NA, NA, R,…</span> <span class="co"># $ ERY <rsi> R, R, R, R, R, R, S, S, R, S, S, S, R, R, R, R, R, R,…</span> <span class="co"># $ CLI <rsi> R, R, NA, NA, NA, R, NA, NA, NA, NA, NA, NA, R, R, R,…</span> <span class="co"># $ AZM <rsi> R, R, R, R, R, R, S, S, R, S, S, S, R, R, R, R, R, R,…</span> <span class="co"># $ IPM <rsi> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S,…</span> <span class="co"># $ MEM <rsi> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span> <span class="co"># $ MTR <rsi> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span> <span class="co"># $ CHL <rsi> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span> <span class="co"># $ COL <rsi> NA, NA, R, R, R, R, R, R, R, R, R, R, NA, NA, NA, R, …</span> <span class="co"># $ MUP <rsi> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…</span> <span class="co"># $ RIF <rsi> R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R…</span></pre></div> <p>Now to transform this to a data set with only resistance percentages per taxonomic order and genus:</p> <div class="sourceCode" id="cb2"><pre class="downlit"> <span class="va">resistance_data</span> <span class="op"><-</span> <span class="va">example_isolates</span> <span class="op">%>%</span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/group_by.html">group_by</a></span><span class="op">(</span>order <span class="op">=</span> <span class="fu"><a href="../reference/mo_property.html">mo_order</a></span><span class="op">(</span><span class="va">mo</span><span class="op">)</span>, <span class="co"># group on anything, like order</span> genus <span class="op">=</span> <span class="fu"><a href="../reference/mo_property.html">mo_genus</a></span><span class="op">(</span><span class="va">mo</span><span class="op">)</span><span class="op">)</span> <span class="op">%>%</span> <span class="co"># and genus as we do here</span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/summarise_all.html">summarise_if</a></span><span class="op">(</span><span class="va">is.rsi</span>, <span class="va">resistance</span><span class="op">)</span> <span class="op">%>%</span> <span class="co"># then get resistance of all drugs</span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/select.html">select</a></span><span class="op">(</span><span class="va">order</span>, <span class="va">genus</span>, <span class="va">AMC</span>, <span class="va">CXM</span>, <span class="va">CTX</span>, <span class="va">CAZ</span>, <span class="va">GEN</span>, <span class="va">TOB</span>, <span class="va">TMP</span>, <span class="va">SXT</span><span class="op">)</span> <span class="co"># and select only relevant columns</span> <span class="fu"><a href="https://rdrr.io/r/utils/head.html">head</a></span><span class="op">(</span><span class="va">resistance_data</span><span class="op">)</span> <span class="co"># # A tibble: 6 x 10</span> <span class="co"># # Groups: order [5]</span> <span class="co"># order genus AMC CXM CTX CAZ GEN TOB TMP SXT</span> <span class="co"># <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl></span> <span class="co"># 1 (unknown order) (unknown gen… NA NA NA NA NA NA NA NA</span> <span class="co"># 2 Actinomycetales Schaalia NA NA NA NA NA NA NA NA</span> <span class="co"># 3 Bacteroidales Bacteroides NA NA NA NA NA NA NA NA</span> <span class="co"># 4 Campylobacteral… Campylobacter NA NA NA NA NA NA NA NA</span> <span class="co"># 5 Caryophanales Gemella NA NA NA NA NA NA NA NA</span> <span class="co"># 6 Caryophanales Listeria NA NA NA NA NA NA NA NA</span></pre></div> </div> <div id="perform-principal-component-analysis" class="section level1"> <h1 class="hasAnchor"> <a href="#perform-principal-component-analysis" class="anchor"></a>Perform principal component analysis</h1> <p>The new <code><a href="../reference/pca.html">pca()</a></code> function will automatically filter on rows that contain numeric values in all selected variables, so we now only need to do:</p> <div class="sourceCode" id="cb3"><pre class="downlit"> <span class="va">pca_result</span> <span class="op"><-</span> <span class="fu"><a href="../reference/pca.html">pca</a></span><span class="op">(</span><span class="va">resistance_data</span><span class="op">)</span> <span class="co"># ℹ Columns selected for PCA: "AMC", "CAZ", "CTX", "CXM", "GEN", "SXT", "TMP"</span> <span class="co"># and "TOB". Total observations available: 7.</span></pre></div> <p>The result can be reviewed with the good old <code><a href="https://rdrr.io/r/base/summary.html">summary()</a></code> function:</p> <div class="sourceCode" id="cb4"><pre class="downlit"> <span class="fu"><a href="https://rdrr.io/r/base/summary.html">summary</a></span><span class="op">(</span><span class="va">pca_result</span><span class="op">)</span> <span class="co"># Groups (n=4, named as 'order'):</span> <span class="co"># [1] "Caryophanales" "Enterobacterales" "Lactobacillales" "Pseudomonadales"</span> <span class="co"># Importance of components:</span> <span class="co"># PC1 PC2 PC3 PC4 PC5 PC6 PC7</span> <span class="co"># Standard deviation 2.1539 1.6807 0.6138 0.33879 0.20808 0.03140 5.121e-17</span> <span class="co"># Proportion of Variance 0.5799 0.3531 0.0471 0.01435 0.00541 0.00012 0.000e+00</span> <span class="co"># Cumulative Proportion 0.5799 0.9330 0.9801 0.99446 0.99988 1.00000 1.000e+00</span></pre></div> <pre><code># Groups (n=4, named as 'order'): # [1] "Caryophanales" "Enterobacterales" "Lactobacillales" "Pseudomonadales"</code></pre> <p>Good news. The first two components explain a total of 93.3% of the variance (see the PC1 and PC2 values of the <em>Proportion of Variance</em>. We can create a so-called biplot with the base R <code><a href="https://rdrr.io/r/stats/biplot.html">biplot()</a></code> function, to see which antimicrobial resistance per drug explain the difference per microorganism.</p> </div> <div id="plotting-the-results" class="section level1"> <h1 class="hasAnchor"> <a href="#plotting-the-results" class="anchor"></a>Plotting the results</h1> <div class="sourceCode" id="cb6"><pre class="downlit"> <span class="fu"><a href="https://rdrr.io/r/stats/biplot.html">biplot</a></span><span class="op">(</span><span class="va">pca_result</span><span class="op">)</span></pre></div> <p><img src="PCA_files/figure-html/unnamed-chunk-5-1.png" width="750"></p> <p>But we can’t see the explanation of the points. Perhaps this works better with our new <code><a href="../reference/ggplot_pca.html">ggplot_pca()</a></code> function, that automatically adds the right labels and even groups:</p> <div class="sourceCode" id="cb7"><pre class="downlit"> <span class="fu"><a href="../reference/ggplot_pca.html">ggplot_pca</a></span><span class="op">(</span><span class="va">pca_result</span><span class="op">)</span></pre></div> <p><img src="PCA_files/figure-html/unnamed-chunk-6-1.png" width="750"></p> <p>You can also print an ellipse per group, and edit the appearance:</p> <div class="sourceCode" id="cb8"><pre class="downlit"> <span class="fu"><a href="../reference/ggplot_pca.html">ggplot_pca</a></span><span class="op">(</span><span class="va">pca_result</span>, ellipse <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span> <span class="op">+</span> <span class="fu">ggplot2</span><span class="fu">::</span><span class="fu"><a href="https://ggplot2.tidyverse.org/reference/labs.html">labs</a></span><span class="op">(</span>title <span class="op">=</span> <span class="st">"An AMR/PCA biplot!"</span><span class="op">)</span></pre></div> <p><img src="PCA_files/figure-html/unnamed-chunk-7-1.png" width="750"></p> </div> </div> <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> <nav id="toc" data-toggle="toc"><h2 data-toc-skip>Contents</h2> </nav> </div> </div> <footer><div class="copyright"> <p>Developed by <a href="https://www.rug.nl/staff/m.s.berends/">Matthijs S. Berends</a>, <a href="https://www.rug.nl/staff/c.f.luz/">Christian F. Luz</a>, <a href="https://www.rug.nl/staff/a.w.friedrich/">Alexander W. Friedrich</a>, <a href="https://www.rug.nl/staff/b.sinha/">Bhanu N. M. Sinha</a>, <a href="https://www.rug.nl/staff/c.j.albers/">Casper J. Albers</a>, <a href="https://www.rug.nl/staff/c.glasner/">Corinna Glasner</a>.</p> </div> <div class="pkgdown"> <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p> </div> </footer> </div> </body> </html>