<!DOCTYPE html> <!-- Generated by pkgdown: do not edit by hand --><html lang="en"> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>How to predict antimicrobial resistance • AMR (for R)</title> <!-- favicons --><link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png"> <link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png"> <link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png"> <link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png"> <!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link href="https://cdnjs.cloudflare.com/ajax/libs/bootswatch/3.4.0/flatly/bootstrap.min.css" rel="stylesheet" crossorigin="anonymous"> <script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../bootstrap-toc.css"> <script src="../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"> <!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"> <script src="../pkgdown.js"></script><link href="../extra.css" rel="stylesheet"> <script src="../extra.js"></script><meta property="og:title" content="How to predict antimicrobial resistance"> <meta property="og:description" content="AMR"> <meta property="og:image" content="https://msberends.github.io/AMR/logo.svg"> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:creator" content="@msberends"> <meta name="twitter:site" content="@univgroningen"> <!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> <![endif]--> </head> <body data-spy="scroll" data-target="#toc"> <div class="container template-article"> <header><div class="navbar navbar-default navbar-fixed-top" role="navigation"> <div class="container"> <div class="navbar-header"> <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <span class="navbar-brand"> <a class="navbar-link" href="../index.html">AMR (for R)</a> <span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.8.1</span> </span> </div> <div id="navbar" class="navbar-collapse collapse"> <ul class="nav navbar-nav"> <li> <a href="../index.html"> <span class="fa fa-home"></span> Home </a> </li> <li class="dropdown"> <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false"> <span class="fa fa-question-circle"></span> How to <span class="caret"></span> </a> <ul class="dropdown-menu" role="menu"> <li> <a href="../articles/AMR.html"> <span class="fa fa-directions"></span> Conduct AMR analysis </a> </li> <li> <a href="../articles/resistance_predict.html"> <span class="fa fa-dice"></span> Predict antimicrobial resistance </a> </li> <li> <a href="../articles/datasets.html"> <span class="fa fa-database"></span> Data sets for download / own use </a> </li> <li> <a href="../articles/PCA.html"> <span class="fa fa-compress"></span> Conduct principal component analysis for AMR </a> </li> <li> <a href="../articles/MDR.html"> <span class="fa fa-skull-crossbones"></span> Determine multi-drug resistance (MDR) </a> </li> <li> <a href="../articles/WHONET.html"> <span class="fa fa-globe-americas"></span> Work with WHONET data </a> </li> <li> <a href="../articles/SPSS.html"> <span class="fa fa-file-upload"></span> Import data from SPSS/SAS/Stata </a> </li> <li> <a href="../articles/EUCAST.html"> <span class="fa fa-exchange-alt"></span> Apply EUCAST rules </a> </li> <li> <a href="../reference/mo_property.html"> <span class="fa fa-bug"></span> Get properties of a microorganism </a> </li> <li> <a href="../reference/ab_property.html"> <span class="fa fa-capsules"></span> Get properties of an antibiotic </a> </li> <li> <a href="../articles/benchmarks.html"> <span class="fa fa-shipping-fast"></span> Other: benchmarks </a> </li> </ul> </li> <li> <a href="../reference/index.html"> <span class="fa fa-book-open"></span> Manual </a> </li> <li> <a href="../authors.html"> <span class="fa fa-users"></span> Authors </a> </li> <li> <a href="../news/index.html"> <span class="far fa-newspaper"></span> Changelog </a> </li> </ul> <ul class="nav navbar-nav navbar-right"> <li> <a href="https://github.com/msberends/AMR" class="external-link"> <span class="fab fa-github"></span> Source Code </a> </li> </ul> </div> <!--/.nav-collapse --> </div> <!--/.container --> </div> <!--/.navbar --> </header><script src="resistance_predict_files/accessible-code-block-0.0.1/empty-anchor.js"></script><div class="row"> <div class="col-md-9 contents"> <div class="page-header toc-ignore"> <h1 data-toc-skip>How to predict antimicrobial resistance</h1> <small class="dont-index">Source: <a href="https://github.com/msberends/AMR/blob/HEAD/vignettes/resistance_predict.Rmd" class="external-link"><code>vignettes/resistance_predict.Rmd</code></a></small> <div class="hidden name"><code>resistance_predict.Rmd</code></div> </div> <div class="section level2"> <h2 id="needed-r-packages">Needed R packages<a class="anchor" aria-label="anchor" href="#needed-r-packages"></a> </h2> <p>As with many uses in R, we need some additional packages for AMR data analysis. Our package works closely together with the <a href="https://www.tidyverse.org" class="external-link">tidyverse packages</a> <a href="https://dplyr.tidyverse.org/" class="external-link"><code>dplyr</code></a> and <a href="https://ggplot2.tidyverse.org" class="external-link"><code>ggplot2</code></a> by Dr Hadley Wickham. The tidyverse tremendously improves the way we conduct data science - it allows for a very natural way of writing syntaxes and creating beautiful plots in R.</p> <p>Our <code>AMR</code> package depends on these packages and even extends their use and functions.</p> <div class="sourceCode" id="cb1"><pre class="downlit sourceCode r"> <code class="sourceCode R"><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://dplyr.tidyverse.org" class="external-link">dplyr</a></span><span class="op">)</span> <span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://ggplot2.tidyverse.org" class="external-link">ggplot2</a></span><span class="op">)</span> <span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va"><a href="https://msberends.github.io/AMR/">AMR</a></span><span class="op">)</span> <span class="co"># (if not yet installed, install with:)</span> <span class="co"># install.packages(c("tidyverse", "AMR"))</span></code></pre></div> </div> <div class="section level2"> <h2 id="prediction-analysis">Prediction analysis<a class="anchor" aria-label="anchor" href="#prediction-analysis"></a> </h2> <p>Our package contains a function <code><a href="../reference/resistance_predict.html">resistance_predict()</a></code>, which takes the same input as functions for <a href="./AMR.html">other AMR data analysis</a>. Based on a date column, it calculates cases per year and uses a regression model to predict antimicrobial resistance.</p> <p>It is basically as easy as:</p> <div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true"></a><span class="co"># resistance prediction of piperacillin/tazobactam (TZP):</span></span> <span id="cb2-2"><a href="#cb2-2" aria-hidden="true"></a><span class="kw">resistance_predict</span>(<span class="dt">tbl =</span> example_isolates, <span class="dt">col_date =</span> <span class="st">"date"</span>, <span class="dt">col_ab =</span> <span class="st">"TZP"</span>, <span class="dt">model =</span> <span class="st">"binomial"</span>)</span> <span id="cb2-3"><a href="#cb2-3" aria-hidden="true"></a></span> <span id="cb2-4"><a href="#cb2-4" aria-hidden="true"></a><span class="co"># or:</span></span> <span id="cb2-5"><a href="#cb2-5" aria-hidden="true"></a>example_isolates <span class="op">%>%</span><span class="st"> </span></span> <span id="cb2-6"><a href="#cb2-6" aria-hidden="true"></a><span class="st"> </span><span class="kw">resistance_predict</span>(<span class="dt">col_ab =</span> <span class="st">"TZP"</span>,</span> <span id="cb2-7"><a href="#cb2-7" aria-hidden="true"></a> model <span class="st">"binomial"</span>)</span> <span id="cb2-8"><a href="#cb2-8" aria-hidden="true"></a></span> <span id="cb2-9"><a href="#cb2-9" aria-hidden="true"></a><span class="co"># to bind it to object 'predict_TZP' for example:</span></span> <span id="cb2-10"><a href="#cb2-10" aria-hidden="true"></a>predict_TZP <-<span class="st"> </span>example_isolates <span class="op">%>%</span><span class="st"> </span></span> <span id="cb2-11"><a href="#cb2-11" aria-hidden="true"></a><span class="st"> </span><span class="kw">resistance_predict</span>(<span class="dt">col_ab =</span> <span class="st">"TZP"</span>,</span> <span id="cb2-12"><a href="#cb2-12" aria-hidden="true"></a> <span class="dt">model =</span> <span class="st">"binomial"</span>)</span></code></pre></div> <p>The function will look for a date column itself if <code>col_date</code> is not set.</p> <p>When running any of these commands, a summary of the regression model will be printed unless using <code>resistance_predict(..., info = FALSE)</code>.</p> <pre><code><span class="co"># ℹ Using column 'date' as input for `col_date`.</span></code></pre> <p>This text is only a printed summary - the actual result (output) of the function is a <code>data.frame</code> containing for each year: the number of observations, the actual observed resistance, the estimated resistance and the standard error below and above the estimation:</p> <div class="sourceCode" id="cb4"><pre class="downlit sourceCode r"> <code class="sourceCode R"><span class="va">predict_TZP</span> <span class="co"># year value se_min se_max observations observed estimated</span> <span class="co"># 1 2002 0.20000000 NA NA 15 0.20000000 0.05616378</span> <span class="co"># 2 2003 0.06250000 NA NA 32 0.06250000 0.06163839</span> <span class="co"># 3 2004 0.08536585 NA NA 82 0.08536585 0.06760841</span> <span class="co"># 4 2005 0.05000000 NA NA 60 0.05000000 0.07411100</span> <span class="co"># 5 2006 0.05084746 NA NA 59 0.05084746 0.08118454</span> <span class="co"># 6 2007 0.12121212 NA NA 66 0.12121212 0.08886843</span> <span class="co"># 7 2008 0.04166667 NA NA 72 0.04166667 0.09720264</span> <span class="co"># 8 2009 0.01639344 NA NA 61 0.01639344 0.10622731</span> <span class="co"># 9 2010 0.05660377 NA NA 53 0.05660377 0.11598223</span> <span class="co"># 10 2011 0.18279570 NA NA 93 0.18279570 0.12650615</span> <span class="co"># 11 2012 0.30769231 NA NA 65 0.30769231 0.13783610</span> <span class="co"># 12 2013 0.06896552 NA NA 58 0.06896552 0.15000651</span> <span class="co"># 13 2014 0.10000000 NA NA 60 0.10000000 0.16304829</span> <span class="co"># 14 2015 0.23636364 NA NA 55 0.23636364 0.17698785</span> <span class="co"># 15 2016 0.22619048 NA NA 84 0.22619048 0.19184597</span> <span class="co"># 16 2017 0.16279070 NA NA 86 0.16279070 0.20763675</span> <span class="co"># 17 2018 0.22436641 0.1938710 0.2548618 NA NA 0.22436641</span> <span class="co"># 18 2019 0.24203228 0.2062911 0.2777735 NA NA 0.24203228</span> <span class="co"># 19 2020 0.26062172 0.2191758 0.3020676 NA NA 0.26062172</span> <span class="co"># 20 2021 0.28011130 0.2325557 0.3276669 NA NA 0.28011130</span> <span class="co"># 21 2022 0.30046606 0.2464567 0.3544755 NA NA 0.30046606</span> <span class="co"># 22 2023 0.32163907 0.2609011 0.3823771 NA NA 0.32163907</span> <span class="co"># 23 2024 0.34357130 0.2759081 0.4112345 NA NA 0.34357130</span> <span class="co"># 24 2025 0.36619175 0.2914934 0.4408901 NA NA 0.36619175</span> <span class="co"># 25 2026 0.38941799 0.3076686 0.4711674 NA NA 0.38941799</span> <span class="co"># 26 2027 0.41315710 0.3244399 0.5018743 NA NA 0.41315710</span> <span class="co"># 27 2028 0.43730688 0.3418075 0.5328063 NA NA 0.43730688</span> <span class="co"># 28 2029 0.46175755 0.3597639 0.5637512 NA NA 0.46175755</span> <span class="co"># 29 2030 0.48639359 0.3782932 0.5944939 NA NA 0.48639359</span> <span class="co"># 30 2031 0.51109592 0.3973697 0.6248221 NA NA 0.51109592</span> <span class="co"># 31 2032 0.53574417 0.4169574 0.6545309 NA NA 0.53574417</span></code></pre></div> <p>The function <code>plot</code> is available in base R, and can be extended by other packages to depend the output based on the type of input. We extended its function to cope with resistance predictions:</p> <div class="sourceCode" id="cb5"><pre class="downlit sourceCode r"> <code class="sourceCode R"><span class="fu"><a href="../reference/plot.html">plot</a></span><span class="op">(</span><span class="va">predict_TZP</span><span class="op">)</span></code></pre></div> <p><img src="resistance_predict_files/figure-html/unnamed-chunk-4-1.png" width="720"></p> <p>This is the fastest way to plot the result. It automatically adds the right axes, error bars, titles, number of available observations and type of model.</p> <p>We also support the <code>ggplot2</code> package with our custom function <code><a href="../reference/resistance_predict.html">ggplot_rsi_predict()</a></code> to create more appealing plots:</p> <div class="sourceCode" id="cb6"><pre class="downlit sourceCode r"> <code class="sourceCode R"><span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span><span class="op">(</span><span class="va">predict_TZP</span><span class="op">)</span></code></pre></div> <p><img src="resistance_predict_files/figure-html/unnamed-chunk-5-1.png" width="720"></p> <div class="sourceCode" id="cb7"><pre class="downlit sourceCode r"> <code class="sourceCode R"> <span class="co"># choose for error bars instead of a ribbon</span> <span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span><span class="op">(</span><span class="va">predict_TZP</span>, ribbon <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></code></pre></div> <p><img src="resistance_predict_files/figure-html/unnamed-chunk-5-2.png" width="720"></p> <div class="section level3"> <h3 id="choosing-the-right-model">Choosing the right model<a class="anchor" aria-label="anchor" href="#choosing-the-right-model"></a> </h3> <p>Resistance is not easily predicted; if we look at vancomycin resistance in Gram-positive bacteria, the spread (i.e. standard error) is enormous:</p> <div class="sourceCode" id="cb8"><pre class="downlit sourceCode r"> <code class="sourceCode R"><span class="va">example_isolates</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%>%</a></span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/filter.html" class="external-link">filter</a></span><span class="op">(</span><span class="fu"><a href="../reference/mo_property.html">mo_gramstain</a></span><span class="op">(</span><span class="va">mo</span>, language <span class="op">=</span> <span class="cn">NULL</span><span class="op">)</span> <span class="op">==</span> <span class="st">"Gram-positive"</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%>%</a></span> <span class="fu"><a href="../reference/resistance_predict.html">resistance_predict</a></span><span class="op">(</span>col_ab <span class="op">=</span> <span class="st">"VAN"</span>, year_min <span class="op">=</span> <span class="fl">2010</span>, info <span class="op">=</span> <span class="cn">FALSE</span>, model <span class="op">=</span> <span class="st">"binomial"</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%>%</a></span> <span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span><span class="op">(</span><span class="op">)</span> <span class="co"># ℹ Using column 'date' as input for `col_date`.</span></code></pre></div> <p><img src="resistance_predict_files/figure-html/unnamed-chunk-6-1.png" width="720"></p> <p>Vancomycin resistance could be 100% in ten years, but might also stay around 0%.</p> <p>You can define the model with the <code>model</code> parameter. The model chosen above is a generalised linear regression model using a binomial distribution, assuming that a period of zero resistance was followed by a period of increasing resistance leading slowly to more and more resistance.</p> <p>Valid values are:</p> <table class="table"> <colgroup> <col width="32%"> <col width="25%"> <col width="42%"> </colgroup> <thead><tr class="header"> <th>Input values</th> <th>Function used by R</th> <th>Type of model</th> </tr></thead> <tbody> <tr class="odd"> <td> <code>"binomial"</code> or <code>"binom"</code> or <code>"logit"</code> </td> <td><code>glm(..., family = binomial)</code></td> <td>Generalised linear model with binomial distribution</td> </tr> <tr class="even"> <td> <code>"loglin"</code> or <code>"poisson"</code> </td> <td><code>glm(..., family = poisson)</code></td> <td>Generalised linear model with poisson distribution</td> </tr> <tr class="odd"> <td> <code>"lin"</code> or <code>"linear"</code> </td> <td><code><a href="https://rdrr.io/r/stats/lm.html" class="external-link">lm()</a></code></td> <td>Linear model</td> </tr> </tbody> </table> <p>For the vancomycin resistance in Gram-positive bacteria, a linear model might be more appropriate since no binomial distribution is to be expected based on the observed years:</p> <div class="sourceCode" id="cb9"><pre class="downlit sourceCode r"> <code class="sourceCode R"><span class="va">example_isolates</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%>%</a></span> <span class="fu"><a href="https://dplyr.tidyverse.org/reference/filter.html" class="external-link">filter</a></span><span class="op">(</span><span class="fu"><a href="../reference/mo_property.html">mo_gramstain</a></span><span class="op">(</span><span class="va">mo</span>, language <span class="op">=</span> <span class="cn">NULL</span><span class="op">)</span> <span class="op">==</span> <span class="st">"Gram-positive"</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%>%</a></span> <span class="fu"><a href="../reference/resistance_predict.html">resistance_predict</a></span><span class="op">(</span>col_ab <span class="op">=</span> <span class="st">"VAN"</span>, year_min <span class="op">=</span> <span class="fl">2010</span>, info <span class="op">=</span> <span class="cn">FALSE</span>, model <span class="op">=</span> <span class="st">"linear"</span><span class="op">)</span> <span class="op"><a href="https://magrittr.tidyverse.org/reference/pipe.html" class="external-link">%>%</a></span> <span class="fu"><a href="../reference/resistance_predict.html">ggplot_rsi_predict</a></span><span class="op">(</span><span class="op">)</span> <span class="co"># ℹ Using column 'date' as input for `col_date`.</span></code></pre></div> <p><img src="resistance_predict_files/figure-html/unnamed-chunk-7-1.png" width="720"></p> <p>This seems more likely, doesn’t it?</p> <p>The model itself is also available from the object, as an <code>attribute</code>:</p> <div class="sourceCode" id="cb10"><pre class="downlit sourceCode r"> <code class="sourceCode R"><span class="va">model</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/attributes.html" class="external-link">attributes</a></span><span class="op">(</span><span class="va">predict_TZP</span><span class="op">)</span><span class="op">$</span><span class="va">model</span> <span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">model</span><span class="op">)</span><span class="op">$</span><span class="va">family</span> <span class="co"># </span> <span class="co"># Family: binomial </span> <span class="co"># Link function: logit</span> <span class="fu"><a href="https://rdrr.io/r/base/summary.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">model</span><span class="op">)</span><span class="op">$</span><span class="va">coefficients</span> <span class="co"># Estimate Std. Error z value Pr(>|z|)</span> <span class="co"># (Intercept) -200.67944891 46.17315349 -4.346237 1.384932e-05</span> <span class="co"># year 0.09883005 0.02295317 4.305725 1.664395e-05</span></code></pre></div> </div> </div> </div> <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar"> <nav id="toc" data-toggle="toc"><h2 data-toc-skip>Contents</h2> </nav> </div> </div> <footer><div class="copyright"> <p></p> <p>Developed by Matthijs S. Berends, Christian F. Luz, Dennis Souverein, Erwin E. A. Hassing.</p> </div> <div class="pkgdown"> <p></p> <p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.2.</p> </div> </footer> </div> </body> </html>