(
AMR
is a free and open-source R package to simplify the analysis and prediction of Antimicrobial Resistance (AMR) and to work with microbial and antimicrobial properties by using evidence-based methods.
We created this package for academic research at the Faculty of Medical Sciences of the University of Groningen and the Medical Microbiology & Infection Prevention (MMBI) department of the University Medical Center Groningen (UMCG). This R package is free software; you can freely use and distribute it for both personal and commercial (but not patent) purposes under the terms of the GNU General Public License version 2.0 (GPL-2), as published by the Free Software Foundation. Read further about our GPL-2 licence here.
This package is ready-to-use for a professional environment by specialists in the following fields:
Medical Microbiology:
Veterinary Microbiology:
Microbial Ecology:
Other specialists in any of the above fields:
Developers:
This package is available on the official R network (CRAN). Install this package in R with:
install.packages("AMR")
It will be downloaded and installed automatically.
To find out how to conduct AMR analysis, please continue reading here to get started or click the links in the ‘How to’ menu.
This package contains the complete microbial taxonomic data (with all nine taxonomic ranks - from kingdom to subspecies) from the publicly available Integrated Taxonomic Information System (ITIS, https://www.itis.gov).
All (sub)species from the taxonomic kingdoms Bacteria, Fungi and Protozoa are included in this package, as well as all previously accepted names known to ITIS. Furthermore, the responsible authors and year of publication are available. This allows users to use authoritative taxonomic information for their data analysis on any microorganism, not only human pathogens. It also helps to quickly determine the Gram stain of bacteria, since all bacteria are classified into subkingdom Negibacteria or Posibacteria. ITIS is a partnership of U.S., Canadian, and Mexican agencies and taxonomic specialists.
The AMR
package basically does four important things:
as.mo()
to get an ID of a microorganism. The IDs are human readable for the trained eye - the ID of Klebsiella pneumoniae is “B_KLBSL_PNE” (B stands for Bacteria) and the ID of S. aureus is “B_STPHY_AUR”. The function takes almost any text as input that looks like the name or code of a microorganism like “E. coli”, “esco” and “esccol”. Even as.mo("MRSA")
will return the ID of S. aureus. Moreover, it can group all coagulase negative and positive Staphylococci, and can transform Streptococci into Lancefield groups. To find bacteria based on your input, it uses Artificial Intelligence to look up values in the included ITIS data, consisting of more than 18,000 microorganisms.as.rsi()
to transform values to valid antimicrobial results. It produces just S, I or R based on your input and warns about invalid values. Even values like “<=0.002; S” (combined MIC/RSI) will result in “S”.as.mic()
to cleanse your MIC values. It produces a so-called factor (called ordinal in SPSS) with valid MIC values as levels. A value like “<=0.002; S” (combined MIC/RSI) will result in “<=0.002”.as.atc()
to get the ATC code of an antibiotic as defined by the WHO. This package contains a database with most LIS codes, official names, DDDs and even trade names of antibiotics. For example, the values “Furabid”, “Furadantin”, “nitro” all return the ATC code of Nitrofurantoine.eucast_rules()
to apply EUCAST expert rules to isolates.first_isolate()
to identify the first isolates of every patient using guidelines from the CLSI (Clinical and Laboratory Standards Institute).
mdro()
(abbreviation of Multi Drug Resistant Organisms) to check your isolates for exceptional resistance with country-specific guidelines or EUCAST rules. Currently, national guidelines for Germany and the Netherlands are supported.microorganisms
contains the complete taxonomic tree of more than 18,000 microorganisms (bacteria, fungi/yeasts and protozoa). Furthermore, the colloquial name and Gram stain are available, which enables resistance analysis of e.g. different antibiotics per Gram stain. The package also contains functions to look up values in this data set like mo_genus()
, mo_family()
, mo_gramstain()
or even mo_phylum()
. As they use as.mo()
internally, they also use artificial intelligence. For example, mo_genus("MRSA")
and mo_genus("S. aureus")
will both return "Staphylococcus"
. They also come with support for German, Dutch, Spanish, Italian, French and Portuguese. These functions can be used to add new variables to your data.antibiotics
contains the ATC code, LIS codes, official name, trivial name and DDD of both oral and parenteral administration. It also contains a total of 298 trade names. Use functions like ab_name()
and ab_tradenames()
to look up values. The ab_*
functions use as.atc()
internally so they support AI to guess your expected result. For example, ab_name("Fluclox")
, ab_name("Floxapen")
and ab_name("J01CF05")
will all return "Flucloxacillin"
. These functions can again be used to add new variables to your data.portion_R()
, portion_IR()
, portion_I()
, portion_SI()
and portion_S()
functions. Similarly, the number of isolates can be determined with the count_R()
, count_IR()
, count_I()
, count_SI()
and count_S()
functions. All these functions can be used with the dplyr
package (e.g. in conjunction with summarise()
)geom_rsi()
, a function made for the ggplot2
packageresistance_predict()
functionkurtosis()
, skewness()
and create frequency tables with freq()
septic_patients
. This data set contains: