Skip to contents

These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode() function returns the index number of the episode per group, while the is_new_episode() function returns values TRUE/FALSE to indicate whether an item in a vector is the start of a new episode.

Usage

get_episode(x, episode_days, ...)

is_new_episode(x, episode_days, ...)

Arguments

x

vector of dates (class Date or POSIXt), will be sorted internally to determine episodes

episode_days

required episode length in days, can also be less than a day or Inf, see Details

...

ignored, only in place to allow future extensions

Value

  • get_episode(): a double vector

  • is_new_episode(): a logical vector

Details

Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.

The first_isolate() function is a wrapper around the is_new_episode() function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.

The dplyr package is not required for these functions to work, but these functions do support variable grouping and work conveniently inside dplyr verbs such as filter(), mutate() and summarise().

See also

Examples

# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 200), ]

get_episode(df$date, episode_days = 60)    # indices
#>   [1] 63 42 61 46 22 21 21 10 46 12 31 47 53 64  9 27 12  7 30 25 15 61 52 20 18
#>  [26] 46 53 39 38 54 61 58 12 58 39 21 27 35 66 46 59 57 13 43 30 29 60 51 25 35
#>  [51] 22  4 56 20  5 18 18 22  9 21 50  9 58 38 59 44 46 11 41 55 55  5 14 56 26
#>  [76] 53 63 33 20  5 31 32 10  1 51 46  2 28 24 40 10 13 26 55 12 49 54 16 43 26
#> [101] 51 37 60 27 49 23 42 63  5 60  7 23  4 37 47 22 52 45 65 56 11 38 17 36 12
#> [126]  9 47 25 14  1 56 38 66 42 53 19 51 10 34 16 11 15 62 31 40 22 63 49 32 62
#> [151] 45  6 48  5 58 57  7 56 46 13 58 65 15 21  7 42  8  5  6  6 28 29  4 26 19
#> [176]  3 56  3 60 61 63 63 56 65 16 21 40 57 23 16 47 58 61 21 32  9 60  3 17 62
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#>   [1] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
#>  [13] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE
#>  [25] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE
#>  [37] FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE
#>  [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
#>  [61]  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE
#>  [73] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
#>  [85] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
#>  [97] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
#> [109]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
#> [121] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE
#> [133] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
#> [145]  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE
#> [157] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
#> [169] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE
#> [181]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
#> [193] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE

# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 3 × 49
#>   date       hospita…¹ ward_…² ward_…³ ward_…⁴   age gender patie…⁵ mo          
#>   <date>     <fct>     <lgl>   <lgl>   <lgl>   <dbl> <chr>  <chr>   <mo>        
#> 1 2002-06-06 D         FALSE   TRUE    FALSE      20 F      24D393  B_ESCHR_COLI
#> 2 2002-06-18 B         TRUE    FALSE   FALSE      30 M      012595  B_CRYNB     
#> 3 2002-07-23 B         TRUE    FALSE   FALSE      51 M      F35553  B_STPHY_AURS
#> # … with 40 more variables: PEN <rsi>, OXA <rsi>, FLC <rsi>, AMX <rsi>,
#> #   AMC <rsi>, AMP <rsi>, TZP <rsi>, CZO <rsi>, FEP <rsi>, CXM <rsi>,
#> #   FOX <rsi>, CTX <rsi>, CAZ <rsi>, CRO <rsi>, GEN <rsi>, TOB <rsi>,
#> #   AMK <rsi>, KAN <rsi>, TMP <rsi>, SXT <rsi>, NIT <rsi>, FOS <rsi>,
#> #   LNZ <rsi>, CIP <rsi>, MFX <rsi>, VAN <rsi>, TEC <rsi>, TCY <rsi>,
#> #   TGC <rsi>, DOX <rsi>, ERY <rsi>, CLI <rsi>, AZM <rsi>, IPM <rsi>,
#> #   MEM <rsi>, MTR <rsi>, CHL <rsi>, COL <rsi>, MUP <rsi>, RIF <rsi>, and …
#> # ℹ Use `colnames()` to see all variable names

# the functions also work for less than a day, e.g. to include one per hour:
get_episode(c(Sys.time(),
              Sys.time() + 60 * 60),
            episode_days = 1/24)
#> [1] 1 2

# \donttest{
if (require("dplyr")) {
  # is_new_episode() can also be used in dplyr verbs to determine patient
  # episodes based on any (combination of) grouping variables:
  df %>%
    mutate(condition = sample(x = c("A", "B", "C"), 
                              size = 2000,
                              replace = TRUE)) %>% 
    group_by(condition) %>%
    mutate(new_episode = is_new_episode(date, 365)) %>%
    select(patient_id, date, condition, new_episode)
    
  df %>%
    group_by(hospital_id, patient_id) %>%
    transmute(date, 
              patient_id,
              new_index = get_episode(date, 60),
              new_logical = is_new_episode(date, 60))
  
  df %>%
    group_by(hospital_id) %>% 
    summarise(n_patients = n_distinct(patient_id),
              n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
              n_episodes_60  = sum(is_new_episode(date, episode_days = 60)),
              n_episodes_30  = sum(is_new_episode(date, episode_days = 30)))
    
    
  # grouping on patients and microorganisms leads to the same
  # results as first_isolate() when using 'episode-based':
  x <- df %>%
    filter_first_isolate(include_unknown = TRUE,
                         method = "episode-based")
    
  y <- df %>%
    group_by(patient_id, mo) %>%
    filter(is_new_episode(date, 365)) %>%
    ungroup()

  identical(x, y)
  
  # but is_new_episode() has a lot more flexibility than first_isolate(),
  # since you can now group on anything that seems relevant:
  df %>%
    group_by(patient_id, mo, hospital_id, ward_icu) %>%
    mutate(flag_episode = is_new_episode(date, 365)) %>%
    select(group_vars(.), flag_episode)
}
#> Error in mutate(., condition = sample(x = c("A", "B", "C"), size = 2000,     replace = TRUE)): Problem while computing `condition = sample(x = c("A", "B", "C"), size =
#> 2000, replace = TRUE)`.
#>  `condition` must be size 200 or 1, not 2000.
# }