NOTE: This page will be updated soon, as the pca() function is currently being developed.
Transforming
For PCA, we need to transform our AMR data first. This is what the
example_isolates
data set in this package looks like:
library(AMR)
library(dplyr)
glimpse(example_isolates)
#> Rows: 2,000
#> Columns: 46
#> $ date <date> 2002-01-02, 2002-01-03, 2002-01-07, 2002-01-07, 2002-01-13, 2…
#> $ patient <chr> "A77334", "A77334", "067927", "067927", "067927", "067927", "4…
#> $ age <dbl> 65, 65, 45, 45, 45, 45, 78, 78, 45, 79, 67, 67, 71, 71, 75, 50…
#> $ gender <chr> "F", "F", "F", "F", "F", "F", "M", "M", "F", "F", "M", "M", "M…
#> $ ward <chr> "Clinical", "Clinical", "ICU", "ICU", "ICU", "ICU", "Clinical"…
#> $ mo <mo> "B_ESCHR_COLI", "B_ESCHR_COLI", "B_STPHY_EPDR", "B_STPHY_EPDR",…
#> $ PEN <sir> R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, S,…
#> $ OXA <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ FLC <sir> NA, NA, R, R, R, R, S, S, R, S, S, S, NA, NA, NA, NA, NA, R, R…
#> $ AMX <sir> NA, NA, NA, NA, NA, NA, R, R, NA, NA, NA, NA, NA, NA, R, NA, N…
#> $ AMC <sir> I, I, NA, NA, NA, NA, S, S, NA, NA, S, S, I, I, R, I, I, NA, N…
#> $ AMP <sir> NA, NA, NA, NA, NA, NA, R, R, NA, NA, NA, NA, NA, NA, R, NA, N…
#> $ TZP <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ CZO <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, NA,…
#> $ FEP <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ CXM <sir> I, I, R, R, R, R, S, S, R, S, S, S, S, S, NA, S, S, R, R, S, S…
#> $ FOX <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, NA,…
#> $ CTX <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, S, S…
#> $ CAZ <sir> NA, NA, R, R, R, R, R, R, R, R, R, R, NA, NA, NA, S, S, R, R, …
#> $ CRO <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, S, S…
#> $ GEN <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ TOB <sir> NA, NA, NA, NA, NA, NA, S, S, NA, NA, NA, NA, S, S, NA, NA, NA…
#> $ AMK <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ KAN <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ TMP <sir> R, R, S, S, R, R, R, R, S, S, NA, NA, S, S, S, S, S, R, R, R, …
#> $ SXT <sir> R, R, S, S, NA, NA, NA, NA, S, S, NA, NA, S, S, S, S, S, NA, N…
#> $ NIT <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R,…
#> $ FOS <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ LNZ <sir> R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R, R, R, N…
#> $ CIP <sir> NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, NA, NA, NA, NA, S, S…
#> $ MFX <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ VAN <sir> R, R, S, S, S, S, S, S, S, S, NA, NA, R, R, R, R, R, S, S, S, …
#> $ TEC <sir> R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R, R, R, N…
#> $ TCY <sir> R, R, S, S, S, S, S, S, S, I, S, S, NA, NA, I, R, R, S, I, R, …
#> $ TGC <sir> NA, NA, S, S, S, S, S, S, S, NA, S, S, NA, NA, NA, R, R, S, NA…
#> $ DOX <sir> NA, NA, S, S, S, S, S, S, S, NA, S, S, NA, NA, NA, R, R, S, NA…
#> $ ERY <sir> R, R, R, R, R, R, S, S, R, S, S, S, R, R, R, R, R, R, R, R, S,…
#> $ CLI <sir> R, R, NA, NA, NA, R, NA, NA, NA, NA, NA, NA, R, R, R, R, R, NA…
#> $ AZM <sir> R, R, R, R, R, R, S, S, R, S, S, S, R, R, R, R, R, R, R, R, S,…
#> $ IPM <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, S, S, NA, S, S…
#> $ MEM <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ MTR <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ CHL <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ COL <sir> NA, NA, R, R, R, R, R, R, R, R, R, R, NA, NA, NA, R, R, R, R, …
#> $ MUP <sir> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
#> $ RIF <sir> R, R, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, R, R, R, R, R, N…
Now to transform this to a data set with only resistance percentages per taxonomic order and genus:
resistance_data <- example_isolates %>%
group_by(
order = mo_order(mo), # group on anything, like order
genus = mo_genus(mo)
) %>% # and genus as we do here
summarise_if(is.sir, resistance) %>% # then get resistance of all drugs
select(
order, genus, AMC, CXM, CTX,
CAZ, GEN, TOB, TMP, SXT
) # and select only relevant columns
head(resistance_data)
#> # A tibble: 6 × 10
#> # Groups: order [5]
#> order genus AMC CXM CTX CAZ GEN TOB TMP SXT
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (unknown order) (unknown ge… NA NA NA NA NA NA NA NA
#> 2 Actinomycetales Schaalia NA NA NA NA NA NA NA NA
#> 3 Bacteroidales Bacteroides NA NA NA NA NA NA NA NA
#> 4 Campylobacterales Campylobact… NA NA NA NA NA NA NA NA
#> 5 Caryophanales Gemella NA NA NA NA NA NA NA NA
#> 6 Caryophanales Listeria NA NA NA NA NA NA NA NA
Perform principal component analysis
The new pca()
function will automatically filter on rows
that contain numeric values in all selected variables, so we now only
need to do:
pca_result <- pca(resistance_data)
#> ℹ Columns selected for PCA: "AMC", "CAZ", "CTX", "CXM", "GEN", "SXT", "TMP"
#> and "TOB". Total observations available: 7.
The result can be reviewed with the good old summary()
function:
summary(pca_result)
#> Groups (n=4, named as 'order'):
#> [1] "Caryophanales" "Enterobacterales" "Lactobacillales" "Pseudomonadales"
#> Importance of components:
#> PC1 PC2 PC3 PC4 PC5 PC6 PC7
#> Standard deviation 2.1539 1.6807 0.6138 0.33879 0.20808 0.03140 1.232e-16
#> Proportion of Variance 0.5799 0.3531 0.0471 0.01435 0.00541 0.00012 0.000e+00
#> Cumulative Proportion 0.5799 0.9330 0.9801 0.99446 0.99988 1.00000 1.000e+00
#> Groups (n=4, named as 'order'):
#> [1] "Caryophanales" "Enterobacterales" "Lactobacillales" "Pseudomonadales"
Good news. The first two components explain a total of 93.3% of the
variance (see the PC1 and PC2 values of the Proportion of
Variance. We can create a so-called biplot with the base R
biplot()
function, to see which antimicrobial resistance
per drug explain the difference per microorganism.
Plotting the results
biplot(pca_result)
But we can’t see the explanation of the points. Perhaps this works
better with our new ggplot_pca()
function, that
automatically adds the right labels and even groups:
ggplot_pca(pca_result)
You can also print an ellipse per group, and edit the appearance:
ggplot_pca(pca_result, ellipse = TRUE) +
ggplot2::labs(title = "An AMR/PCA biplot!")