These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument episode_days
. This can be used to determine clinical episodes for any epidemiological analysis. The get_episode()
function returns the index number of the episode per group, while the is_new_episode()
function returns TRUE
for every new get_episode()
index, and is thus equal to !duplicated(get_episode(...))
.
Arguments
- x
vector of dates (class
Date
orPOSIXt
), will be sorted internally to determine episodes- episode_days
required episode length in days, can also be less than a day or
Inf
, see Details- ...
ignored, only in place to allow future extensions
Details
The functions get_episode()
and is_new_episode()
differ in this way when setting episode_days
to 365:
person_id | date | get_episode() | is_new_episode() |
A | 2019-01-01 | 1 | TRUE |
A | 2019-03-01 | 1 | FALSE |
A | 2021-01-01 | 2 | TRUE |
B | 2008-01-01 | 1 | TRUE |
B | 2008-01-01 | 1 | FALSE |
C | 2020-01-01 | 1 | TRUE |
Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least episode_days
days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least episode_days
days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.
The first_isolate()
function is a wrapper around the is_new_episode()
function, but is more efficient for data sets containing microorganism codes or names and allows for different isolate selection methods.
The dplyr
package is not required for these functions to work, but these episode functions do support variable grouping and work conveniently inside dplyr
verbs such as filter()
, mutate()
and summarise()
.
Examples
# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 100), ]
get_episode(df$date, episode_days = 60) # indices
#> [1] 14 27 29 10 40 16 37 35 4 35 20 45 26 10 8 40 13 42 20 20 19 44 46 27 43
#> [26] 8 43 18 41 7 47 11 5 23 1 5 41 12 45 10 12 30 24 39 31 36 14 35 42 3
#> [51] 18 21 32 14 38 30 11 31 15 30 17 37 28 1 25 41 44 34 11 41 32 17 2 13 10
#> [76] 22 33 29 37 7 12 4 36 27 28 9 35 16 19 3 14 10 1 36 29 7 43 27 6 10
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#> [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
#> [13] TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE
#> [25] TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
#> [37] FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
#> [49] FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
#> [61] TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
#> [73] TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [85] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [97] FALSE FALSE TRUE FALSE
# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 2 × 46
#> date patient age gender ward mo PEN OXA FLC AMX
#> <date> <chr> <dbl> <chr> <chr> <mo> <sir> <sir> <sir> <sir>
#> 1 2002-10-14 FCC668 54 F ICU B_STRPT_PNMN S NA NA S
#> 2 2002-10-11 974319 78 M Outpatie… B_STPHY_EPDR S NA S NA
#> # … with 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>,
#> # FEP <sir>, CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>,
#> # GEN <sir>, TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>,
#> # NIT <sir>, FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>,
#> # TEC <sir>, TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>,
#> # AZM <sir>, IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>,
#> # MUP <sir>, RIF <sir>
# the functions also work for less than a day, e.g. to include one per hour:
get_episode(
c(
Sys.time(),
Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2
# \donttest{
if (require("dplyr")) {
# is_new_episode() can also be used in dplyr verbs to determine patient
# episodes based on any (combination of) grouping variables:
df %>%
mutate(condition = sample(
x = c("A", "B", "C"),
size = 100,
replace = TRUE
)) %>%
group_by(patient, condition) %>%
mutate(new_episode = is_new_episode(date, 365)) %>%
select(patient, date, condition, new_episode) %>%
arrange(patient, condition, date)
}
#> # A tibble: 100 × 4
#> # Groups: patient, condition [98]
#> patient date condition new_episode
#> <chr> <date> <chr> <lgl>
#> 1 004531 2013-12-02 A TRUE
#> 2 018637 2005-09-28 B TRUE
#> 3 074321 2015-09-20 A TRUE
#> 4 082622 2014-02-08 A TRUE
#> 5 0E2483 2007-08-10 B TRUE
#> 6 114570 2003-04-08 B TRUE
#> 7 146120 2011-09-23 B TRUE
#> 8 23C701 2012-07-27 B TRUE
#> 9 240662 2005-10-26 A TRUE
#> 10 255339 2013-07-22 A TRUE
#> # … with 90 more rows
if (require("dplyr")) {
df %>%
group_by(ward, patient) %>%
transmute(date,
patient,
new_index = get_episode(date, 60),
new_logical = is_new_episode(date, 60)
) %>%
arrange(patient, ward, date)
}
#> # A tibble: 100 × 5
#> # Groups: ward, patient [96]
#> ward date patient new_index new_logical
#> <chr> <date> <chr> <int> <lgl>
#> 1 Clinical 2013-12-02 004531 1 TRUE
#> 2 Clinical 2005-09-28 018637 1 TRUE
#> 3 ICU 2015-09-20 074321 1 TRUE
#> 4 ICU 2014-02-08 082622 1 TRUE
#> 5 ICU 2007-08-10 0E2483 1 TRUE
#> 6 ICU 2003-04-08 114570 1 TRUE
#> 7 Clinical 2011-09-23 146120 1 TRUE
#> 8 Clinical 2012-07-27 23C701 1 TRUE
#> 9 Clinical 2005-10-26 240662 1 TRUE
#> 10 Clinical 2013-07-22 255339 1 TRUE
#> # … with 90 more rows
if (require("dplyr")) {
df %>%
group_by(ward) %>%
summarise(
n_patients = n_distinct(patient),
n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
)
}
#> # A tibble: 3 × 5
#> ward n_patients n_episodes_365 n_episodes_60 n_episodes_30
#> <chr> <int> <int> <int> <int>
#> 1 Clinical 58 13 37 46
#> 2 ICU 33 12 24 27
#> 3 Outpatient 5 4 5 5
# grouping on patients and microorganisms leads to the same
# results as first_isolate() when using 'episode-based':
if (require("dplyr")) {
x <- df %>%
filter_first_isolate(
include_unknown = TRUE,
method = "episode-based"
)
y <- df %>%
group_by(patient, mo) %>%
filter(is_new_episode(date, 365)) %>%
ungroup()
identical(x, y)
}
#> [1] TRUE
# but is_new_episode() has a lot more flexibility than first_isolate(),
# since you can now group on anything that seems relevant:
if (require("dplyr")) {
df %>%
group_by(patient, mo, ward) %>%
mutate(flag_episode = is_new_episode(date, 365)) %>%
select(group_vars(.), flag_episode)
}
#> # A tibble: 100 × 4
#> # Groups: patient, mo, ward [98]
#> patient mo ward flag_episode
#> <chr> <mo> <chr> <lgl>
#> 1 240662 B_STRPT_PNMN Clinical TRUE
#> 2 BF4515 B_ESCHR_COLI Clinical TRUE
#> 3 146120 B_STPHY_AURS Clinical TRUE
#> 4 5B78D5 B_STPHY_CONS Clinical TRUE
#> 5 074321 B_STPHY_HMLY ICU TRUE
#> 6 578848 B_STPHY_CONS Clinical TRUE
#> 7 B12887 B_ESCHR_COLI Clinical TRUE
#> 8 959835 B_STPHY_CONS Clinical TRUE
#> 9 114570 B_STRPT_PYGN ICU TRUE
#> 10 545388 B_STPHY_CPTS Clinical TRUE
#> # … with 90 more rows
# }