<!DOCTYPE html> <!-- Generated by pkgdown: do not edit by hand --><html lang="en"> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <title>AMR for Python • AMR (for R)</title> <!-- favicons --><link rel="icon" type="image/png" sizes="16x16" href="../favicon-16x16.png"> <link rel="icon" type="image/png" sizes="32x32" href="../favicon-32x32.png"> <link rel="apple-touch-icon" type="image/png" sizes="180x180" href="../apple-touch-icon.png"> <link rel="apple-touch-icon" type="image/png" sizes="120x120" href="../apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" type="image/png" sizes="76x76" href="../apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" type="image/png" sizes="60x60" href="../apple-touch-icon-60x60.png"> <script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> <link href="../deps/bootstrap-5.3.1/bootstrap.min.css" rel="stylesheet"> <script src="../deps/bootstrap-5.3.1/bootstrap.bundle.min.js"></script><link href="../deps/Lato-0.4.9/font.css" rel="stylesheet"> <link href="../deps/Fira_Code-0.4.9/font.css" rel="stylesheet"> <link href="../deps/font-awesome-6.5.2/css/all.min.css" rel="stylesheet"> <link href="../deps/font-awesome-6.5.2/css/v4-shims.min.css" rel="stylesheet"> <script src="../deps/headroom-0.11.0/headroom.min.js"></script><script src="../deps/headroom-0.11.0/jQuery.headroom.min.js"></script><script src="../deps/bootstrap-toc-1.0.1/bootstrap-toc.min.js"></script><script src="../deps/clipboard.js-2.0.11/clipboard.min.js"></script><script src="../deps/search-1.0.0/autocomplete.jquery.min.js"></script><script src="../deps/search-1.0.0/fuse.min.js"></script><script src="../deps/search-1.0.0/mark.min.js"></script><!-- pkgdown --><script src="../pkgdown.js"></script><link href="../extra.css" rel="stylesheet"> <script src="../extra.js"></script><meta property="og:title" content="AMR for Python"> <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/katex.min.css" integrity="sha384-nB0miv6/jRmo5UMMR1wu3Gz6NLsoTkbqJghGIsx//Rlm+ZU03BU6SQNC66uf4l5+" crossorigin="anonymous"> <script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/katex.min.js" integrity="sha384-7zkQWkzuo3B5mTepMUcHkMB5jZaolc2xDwL6VFqjFALcbeS9Ggm/Yr2r3Dy4lfFg" crossorigin="anonymous"></script><script defer src="https://cdn.jsdelivr.net/npm/katex@0.16.11/dist/contrib/auto-render.min.js" integrity="sha384-43gviWU0YVjaDtb/GhzOouOXtZMP/7XUzwPTstBeZFe/+rCMvRwr4yROQP43s0Xk" crossorigin="anonymous" onload="renderMathInElement(document.body);"></script> </head> <body> <a href="#main" class="visually-hidden-focusable">Skip to contents</a> <nav class="navbar navbar-expand-lg fixed-top bg-primary" data-bs-theme="dark" aria-label="Site navigation"><div class="container"> <a class="navbar-brand me-2" href="../index.html">AMR (for R)</a> <small class="nav-text text-muted me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="">2.1.1.9237</small> <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div id="navbar" class="collapse navbar-collapse ms-3"> <ul class="navbar-nav me-auto"> <li class="nav-item dropdown"> <button class="nav-link dropdown-toggle" type="button" id="dropdown-how-to" data-bs-toggle="dropdown" aria-expanded="false" aria-haspopup="true"><span class="fa fa-question-circle"></span> How to</button> <ul class="dropdown-menu" aria-labelledby="dropdown-how-to"> <li><a class="dropdown-item" href="../articles/AMR.html"><span class="fa fa-directions"></span> Conduct AMR Analysis</a></li> <li><a class="dropdown-item" href="../reference/antibiogram.html"><span class="fa fa-file-prescription"></span> Generate Antibiogram (Trad./Syndromic/WISCA)</a></li> <li><a class="dropdown-item" href="../articles/AMR_with_tidymodels.html"><span class="fa fa-square-root-variable"></span> Use AMR for Predictive Modelling (tidymodels)</a></li> <li><a class="dropdown-item" href="../articles/datasets.html"><span class="fa fa-database"></span> Download Data Sets for Own Use</a></li> <li><a class="dropdown-item" href="../reference/AMR-options.html"><span class="fa fa-gear"></span> Set User- Or Team-specific Package Settings</a></li> <li><a class="dropdown-item" href="../articles/PCA.html"><span class="fa fa-compress"></span> Conduct Principal Component Analysis for AMR</a></li> <li><a class="dropdown-item" href="../articles/MDR.html"><span class="fa fa-skull-crossbones"></span> Determine Multi-Drug Resistance (MDR)</a></li> <li><a class="dropdown-item" href="../articles/WHONET.html"><span class="fa fa-globe-americas"></span> Work with WHONET Data</a></li> <li><a class="dropdown-item" href="../articles/EUCAST.html"><span class="fa fa-exchange-alt"></span> Apply EUCAST Rules</a></li> <li><a class="dropdown-item" href="../reference/mo_property.html"><span class="fa fa-bug"></span> Get Taxonomy of a Microorganism</a></li> <li><a class="dropdown-item" href="../reference/ab_property.html"><span class="fa fa-capsules"></span> Get Properties of an Antibiotic Drug</a></li> <li><a class="dropdown-item" href="../reference/av_property.html"><span class="fa fa-capsules"></span> Get Properties of an Antiviral Drug</a></li> </ul> </li> <li class="active nav-item"><a class="nav-link" href="../articles/AMR_for_Python.html"><span class="fa fab fa-python"></span> AMR for Python</a></li> <li class="nav-item"><a class="nav-link" href="../reference/index.html"><span class="fa fa-book-open"></span> Manual</a></li> <li class="nav-item"><a class="nav-link" href="../authors.html"><span class="fa fa-users"></span> Authors</a></li> </ul> <ul class="navbar-nav"> <li class="nav-item"><form class="form-inline" role="search"> <input class="form-control" type="search" name="search-input" id="search-input" autocomplete="off" aria-label="Search site" placeholder="Search for" data-search-index="../search.json"> </form></li> <li class="nav-item"><a class="nav-link" href="../news/index.html"><span class="fa fa-newspaper"></span> Changelog</a></li> <li class="nav-item"><a class="external-link nav-link" href="https://github.com/msberends/AMR"><span class="fa fa-github"></span> Source Code</a></li> </ul> </div> </div> </nav><div class="container template-article"> <div class="row"> <main id="main" class="col-md-9"><div class="page-header"> <img src="../logo.svg" class="logo" alt=""><h1>AMR for Python</h1> <small class="dont-index">Source: <a href="https://github.com/msberends/AMR/blob/main/vignettes/AMR_for_Python.Rmd" class="external-link"><code>vignettes/AMR_for_Python.Rmd</code></a></small> <div class="d-none name"><code>AMR_for_Python.Rmd</code></div> </div> <div class="section level2"> <h2 id="introduction">Introduction<a class="anchor" aria-label="anchor" href="#introduction"></a> </h2> <p>The <code>AMR</code> package for R is a powerful tool for antimicrobial resistance (AMR) analysis. It provides extensive features for handling microbial and antimicrobial data. However, for those who work primarily in Python, we now have a more intuitive option available: the <a href="https://pypi.org/project/AMR/" class="external-link"><code>AMR</code> Python package</a>.</p> <p>This Python package is a wrapper around the <code>AMR</code> R package. It uses the <code>rpy2</code> package internally. Despite the need to have R installed, Python users can now easily work with AMR data directly through Python code.</p> </div> <div class="section level2"> <h2 id="prerequisites">Prerequisites<a class="anchor" aria-label="anchor" href="#prerequisites"></a> </h2> <p>This package was only tested with a <a href="https://docs.python.org/3/library/venv.html" class="external-link">virtual environment (venv)</a>. You can set up such an environment by running:</p> <div class="sourceCode" id="cb1"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="co"># linux and macOS:</span></span> <span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a>python <span class="op">-</span>m venv <span class="op">/</span>path<span class="op">/</span>to<span class="op">/</span>new<span class="op">/</span>virtual<span class="op">/</span>environment</span> <span id="cb1-3"><a href="#cb1-3" tabindex="-1"></a></span> <span id="cb1-4"><a href="#cb1-4" tabindex="-1"></a><span class="co"># Windows:</span></span> <span id="cb1-5"><a href="#cb1-5" tabindex="-1"></a>python <span class="op">-</span>m venv C:\path\to\new\virtual\environment</span></code></pre></div> <p>Then you can <a href="https://docs.python.org/3/library/venv.html#how-venvs-work" class="external-link">activate the environment</a>, after which the venv is ready to work with.</p> </div> <div class="section level2"> <h2 id="install-amr">Install AMR<a class="anchor" aria-label="anchor" href="#install-amr"></a> </h2> <ol style="list-style-type: decimal"> <li> <p>Since the Python package is available on the official <a href="https://pypi.org/project/AMR/" class="external-link">Python Package Index</a>, you can just run:</p> <div class="sourceCode" id="cb2"><pre class="sourceCode bash"><code class="sourceCode bash"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a><span class="ex">pip</span> install AMR</span></code></pre></div> </li> <li> <p>Make sure you have R installed. There is <strong>no need to install the <code>AMR</code> R package</strong>, as it will be installed automatically.</p> <p>For Linux:</p> <div class="sourceCode" id="cb3"><pre class="sourceCode bash"><code class="sourceCode bash"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="co"># Ubuntu / Debian</span></span> <span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a><span class="fu">sudo</span> apt install r-base</span> <span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a><span class="co"># Fedora:</span></span> <span id="cb3-4"><a href="#cb3-4" tabindex="-1"></a><span class="fu">sudo</span> dnf install R</span> <span id="cb3-5"><a href="#cb3-5" tabindex="-1"></a><span class="co"># CentOS/RHEL</span></span> <span id="cb3-6"><a href="#cb3-6" tabindex="-1"></a><span class="fu">sudo</span> yum install R</span></code></pre></div> <p>For macOS (using <a href="https://brew.sh" class="external-link">Homebrew</a>):</p> <div class="sourceCode" id="cb4"><pre class="sourceCode bash"><code class="sourceCode bash"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="ex">brew</span> install r</span></code></pre></div> <p>For Windows, visit the <a href="https://cran.r-project.org" class="external-link">CRAN download page</a> to download and install R.</p> </li> </ol> </div> <div class="section level2"> <h2 id="examples-of-usage">Examples of Usage<a class="anchor" aria-label="anchor" href="#examples-of-usage"></a> </h2> <div class="section level3"> <h3 id="cleaning-taxonomy">Cleaning Taxonomy<a class="anchor" aria-label="anchor" href="#cleaning-taxonomy"></a> </h3> <p>Here’s an example that demonstrates how to clean microorganism and drug names using the <code>AMR</code> Python package:</p> <div class="sourceCode" id="cb5"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="im">import</span> pandas <span class="im">as</span> pd</span> <span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a><span class="im">import</span> AMR</span> <span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a></span> <span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a><span class="co"># Sample data</span></span> <span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a>data <span class="op">=</span> {</span> <span id="cb5-6"><a href="#cb5-6" tabindex="-1"></a> <span class="st">"MOs"</span>: [<span class="st">'E. coli'</span>, <span class="st">'ESCCOL'</span>, <span class="st">'esco'</span>, <span class="st">'Esche coli'</span>],</span> <span id="cb5-7"><a href="#cb5-7" tabindex="-1"></a> <span class="st">"Drug"</span>: [<span class="st">'Cipro'</span>, <span class="st">'CIP'</span>, <span class="st">'J01MA02'</span>, <span class="st">'Ciproxin'</span>]</span> <span id="cb5-8"><a href="#cb5-8" tabindex="-1"></a>}</span> <span id="cb5-9"><a href="#cb5-9" tabindex="-1"></a>df <span class="op">=</span> pd.DataFrame(data)</span> <span id="cb5-10"><a href="#cb5-10" tabindex="-1"></a></span> <span id="cb5-11"><a href="#cb5-11" tabindex="-1"></a><span class="co"># Use AMR functions to clean microorganism and drug names</span></span> <span id="cb5-12"><a href="#cb5-12" tabindex="-1"></a>df[<span class="st">'MO_clean'</span>] <span class="op">=</span> AMR.mo_name(df[<span class="st">'MOs'</span>])</span> <span id="cb5-13"><a href="#cb5-13" tabindex="-1"></a>df[<span class="st">'Drug_clean'</span>] <span class="op">=</span> AMR.ab_name(df[<span class="st">'Drug'</span>])</span> <span id="cb5-14"><a href="#cb5-14" tabindex="-1"></a></span> <span id="cb5-15"><a href="#cb5-15" tabindex="-1"></a><span class="co"># Display the results</span></span> <span id="cb5-16"><a href="#cb5-16" tabindex="-1"></a><span class="bu">print</span>(df)</span></code></pre></div> <table class="table"> <thead><tr class="header"> <th>MOs</th> <th>Drug</th> <th>MO_clean</th> <th>Drug_clean</th> </tr></thead> <tbody> <tr class="odd"> <td>E. coli</td> <td>Cipro</td> <td>Escherichia coli</td> <td>Ciprofloxacin</td> </tr> <tr class="even"> <td>ESCCOL</td> <td>CIP</td> <td>Escherichia coli</td> <td>Ciprofloxacin</td> </tr> <tr class="odd"> <td>esco</td> <td>J01MA02</td> <td>Escherichia coli</td> <td>Ciprofloxacin</td> </tr> <tr class="even"> <td>Esche coli</td> <td>Ciproxin</td> <td>Escherichia coli</td> <td>Ciprofloxacin</td> </tr> </tbody> </table> <div class="section level4"> <h4 id="explanation">Explanation<a class="anchor" aria-label="anchor" href="#explanation"></a> </h4> <ul> <li><p><strong>mo_name:</strong> This function standardises microorganism names. Here, different variations of <em>Escherichia coli</em> (such as “E. coli”, “ESCCOL”, “esco”, and “Esche coli”) are all converted into the correct, standardised form, “Escherichia coli”.</p></li> <li><p><strong>ab_name</strong>: Similarly, this function standardises antimicrobial names. The different representations of ciprofloxacin (e.g., “Cipro”, “CIP”, “J01MA02”, and “Ciproxin”) are all converted to the standard name, “Ciprofloxacin”.</p></li> </ul> </div> </div> <div class="section level3"> <h3 id="calculating-amr">Calculating AMR<a class="anchor" aria-label="anchor" href="#calculating-amr"></a> </h3> <div class="sourceCode" id="cb6"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a><span class="im">import</span> AMR</span> <span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a><span class="im">import</span> pandas <span class="im">as</span> pd</span> <span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a></span> <span id="cb6-4"><a href="#cb6-4" tabindex="-1"></a>df <span class="op">=</span> AMR.example_isolates</span> <span id="cb6-5"><a href="#cb6-5" tabindex="-1"></a>result <span class="op">=</span> AMR.resistance(df[<span class="st">"AMX"</span>])</span> <span id="cb6-6"><a href="#cb6-6" tabindex="-1"></a><span class="bu">print</span>(result)</span></code></pre></div> <pre><code>[0.59555556]</code></pre> </div> <div class="section level3"> <h3 id="generating-antibiograms">Generating Antibiograms<a class="anchor" aria-label="anchor" href="#generating-antibiograms"></a> </h3> <p>One of the core functions of the <code>AMR</code> package is generating an antibiogram, a table that summarises the antimicrobial susceptibility of bacterial isolates. Here’s how you can generate an antibiogram from Python:</p> <div class="sourceCode" id="cb8"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a>result2a <span class="op">=</span> AMR.antibiogram(df[[<span class="st">"mo"</span>, <span class="st">"AMX"</span>, <span class="st">"CIP"</span>, <span class="st">"TZP"</span>]])</span> <span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a><span class="bu">print</span>(result2a)</span></code></pre></div> <table class="table"> <colgroup> <col width="22%"> <col width="22%"> <col width="22%"> <col width="33%"> </colgroup> <thead><tr class="header"> <th>Pathogen</th> <th>Amoxicillin</th> <th>Ciprofloxacin</th> <th>Piperacillin/tazobactam</th> </tr></thead> <tbody> <tr class="odd"> <td>CoNS</td> <td>7% (10/142)</td> <td>73% (183/252)</td> <td>30% (10/33)</td> </tr> <tr class="even"> <td>E. coli</td> <td>50% (196/392)</td> <td>88% (399/456)</td> <td>94% (393/416)</td> </tr> <tr class="odd"> <td>K. pneumoniae</td> <td>0% (0/58)</td> <td>96% (53/55)</td> <td>89% (47/53)</td> </tr> <tr class="even"> <td>P. aeruginosa</td> <td>0% (0/30)</td> <td>100% (30/30)</td> <td>None</td> </tr> <tr class="odd"> <td>P. mirabilis</td> <td>None</td> <td>94% (34/36)</td> <td>None</td> </tr> <tr class="even"> <td>S. aureus</td> <td>6% (8/131)</td> <td>90% (171/191)</td> <td>None</td> </tr> <tr class="odd"> <td>S. epidermidis</td> <td>1% (1/91)</td> <td>64% (87/136)</td> <td>None</td> </tr> <tr class="even"> <td>S. hominis</td> <td>None</td> <td>80% (56/70)</td> <td>None</td> </tr> <tr class="odd"> <td>S. pneumoniae</td> <td>100% (112/112)</td> <td>None</td> <td>100% (112/112)</td> </tr> </tbody> </table> <div class="sourceCode" id="cb9"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a>result2b <span class="op">=</span> AMR.antibiogram(df[[<span class="st">"mo"</span>, <span class="st">"AMX"</span>, <span class="st">"CIP"</span>, <span class="st">"TZP"</span>]], mo_transform <span class="op">=</span> <span class="st">"gramstain"</span>)</span> <span id="cb9-2"><a href="#cb9-2" tabindex="-1"></a><span class="bu">print</span>(result2b)</span></code></pre></div> <table class="table"> <colgroup> <col width="20%"> <col width="22%"> <col width="23%"> <col width="33%"> </colgroup> <thead><tr class="header"> <th>Pathogen</th> <th>Amoxicillin</th> <th>Ciprofloxacin</th> <th>Piperacillin/tazobactam</th> </tr></thead> <tbody> <tr class="odd"> <td>Gram-negative</td> <td>36% (226/631)</td> <td>91% (621/684)</td> <td>88% (565/641)</td> </tr> <tr class="even"> <td>Gram-positive</td> <td>43% (305/703)</td> <td>77% (560/724)</td> <td>86% (296/345)</td> </tr> </tbody> </table> <p>In this example, we generate an antibiogram by selecting various antibiotics.</p> </div> <div class="section level3"> <h3 id="taxonomic-data-sets-now-in-python">Taxonomic Data Sets Now in Python!<a class="anchor" aria-label="anchor" href="#taxonomic-data-sets-now-in-python"></a> </h3> <p>As a Python user, you might like that the most important data sets of the <code>AMR</code> R package, <code>microorganisms</code>, <code>antimicrobials</code>, <code>clinical_breakpoints</code>, and <code>example_isolates</code>, are now available as regular Python data frames:</p> <div class="sourceCode" id="cb10"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb10-1"><a href="#cb10-1" tabindex="-1"></a>AMR.microorganisms</span></code></pre></div> <table class="table"> <colgroup> <col width="11%"> <col width="29%"> <col width="8%"> <col width="8%"> <col width="8%"> <col width="10%"> <col width="13%"> <col width="9%"> </colgroup> <thead><tr class="header"> <th>mo</th> <th>fullname</th> <th>status</th> <th>kingdom</th> <th>gbif</th> <th>gbif_parent</th> <th>gbif_renamed_to</th> <th>prevalence</th> </tr></thead> <tbody> <tr class="odd"> <td>B_GRAMN</td> <td>(unknown Gram-negatives)</td> <td>unknown</td> <td>Bacteria</td> <td>None</td> <td>None</td> <td>None</td> <td>2.0</td> </tr> <tr class="even"> <td>B_GRAMP</td> <td>(unknown Gram-positives)</td> <td>unknown</td> <td>Bacteria</td> <td>None</td> <td>None</td> <td>None</td> <td>2.0</td> </tr> <tr class="odd"> <td>B_ANAER-NEG</td> <td>(unknown anaerobic Gram-negatives)</td> <td>unknown</td> <td>Bacteria</td> <td>None</td> <td>None</td> <td>None</td> <td>2.0</td> </tr> <tr class="even"> <td>B_ANAER-POS</td> <td>(unknown anaerobic Gram-positives)</td> <td>unknown</td> <td>Bacteria</td> <td>None</td> <td>None</td> <td>None</td> <td>2.0</td> </tr> <tr class="odd"> <td>B_ANAER</td> <td>(unknown anaerobic bacteria)</td> <td>unknown</td> <td>Bacteria</td> <td>None</td> <td>None</td> <td>None</td> <td>2.0</td> </tr> <tr class="even"> <td>…</td> <td>…</td> <td>…</td> <td>…</td> <td>…</td> <td>…</td> <td>…</td> <td>…</td> </tr> <tr class="odd"> <td>B_ZYMMN_POMC</td> <td>Zymomonas pomaceae</td> <td>accepted</td> <td>Bacteria</td> <td>10744418</td> <td>3221412</td> <td>None</td> <td>2.0</td> </tr> <tr class="even"> <td>B_ZYMPH</td> <td>Zymophilus</td> <td>synonym</td> <td>Bacteria</td> <td>None</td> <td>9475166</td> <td>None</td> <td>2.0</td> </tr> <tr class="odd"> <td>B_ZYMPH_PCVR</td> <td>Zymophilus paucivorans</td> <td>synonym</td> <td>Bacteria</td> <td>None</td> <td>None</td> <td>None</td> <td>2.0</td> </tr> <tr class="even"> <td>B_ZYMPH_RFFN</td> <td>Zymophilus raffinosivorans</td> <td>synonym</td> <td>Bacteria</td> <td>None</td> <td>None</td> <td>None</td> <td>2.0</td> </tr> <tr class="odd"> <td>F_ZYZYG</td> <td>Zyzygomyces</td> <td>unknown</td> <td>Fungi</td> <td>None</td> <td>7581</td> <td>None</td> <td>2.0</td> </tr> </tbody> </table> <div class="sourceCode" id="cb11"><pre class="sourceCode python"><code class="sourceCode python"><span id="cb11-1"><a href="#cb11-1" tabindex="-1"></a>AMR.antimicrobials</span></code></pre></div> <table style="width:100%;" class="table"> <colgroup> <col width="4%"> <col width="12%"> <col width="20%"> <col width="25%"> <col width="9%"> <col width="11%"> <col width="7%"> <col width="9%"> </colgroup> <thead><tr class="header"> <th>ab</th> <th>cid</th> <th>name</th> <th>group</th> <th>oral_ddd</th> <th>oral_units</th> <th>iv_ddd</th> <th>iv_units</th> </tr></thead> <tbody> <tr class="odd"> <td>AMA</td> <td>4649.0</td> <td>4-aminosalicylic acid</td> <td>Antimycobacterials</td> <td>12.00</td> <td>g</td> <td>NaN</td> <td>None</td> </tr> <tr class="even"> <td>ACM</td> <td>6450012.0</td> <td>Acetylmidecamycin</td> <td>Macrolides/lincosamides</td> <td>NaN</td> <td>None</td> <td>NaN</td> <td>None</td> </tr> <tr class="odd"> <td>ASP</td> <td>49787020.0</td> <td>Acetylspiramycin</td> <td>Macrolides/lincosamides</td> <td>NaN</td> <td>None</td> <td>NaN</td> <td>None</td> </tr> <tr class="even"> <td>ALS</td> <td>8954.0</td> <td>Aldesulfone sodium</td> <td>Other antibacterials</td> <td>0.33</td> <td>g</td> <td>NaN</td> <td>None</td> </tr> <tr class="odd"> <td>AMK</td> <td>37768.0</td> <td>Amikacin</td> <td>Aminoglycosides</td> <td>NaN</td> <td>None</td> <td>1.0</td> <td>g</td> </tr> <tr class="even"> <td>…</td> <td>…</td> <td>…</td> <td>…</td> <td>…</td> <td>…</td> <td>…</td> <td>…</td> </tr> <tr class="odd"> <td>VIR</td> <td>11979535.0</td> <td>Virginiamycine</td> <td>Other antibacterials</td> <td>NaN</td> <td>None</td> <td>NaN</td> <td>None</td> </tr> <tr class="even"> <td>VOR</td> <td>71616.0</td> <td>Voriconazole</td> <td>Antifungals/antimycotics</td> <td>0.40</td> <td>g</td> <td>0.4</td> <td>g</td> </tr> <tr class="odd"> <td>XBR</td> <td>72144.0</td> <td>Xibornol</td> <td>Other antibacterials</td> <td>NaN</td> <td>None</td> <td>NaN</td> <td>None</td> </tr> <tr class="even"> <td>ZID</td> <td>77846445.0</td> <td>Zidebactam</td> <td>Other antibacterials</td> <td>NaN</td> <td>None</td> <td>NaN</td> <td>None</td> </tr> <tr class="odd"> <td>ZFD</td> <td>NaN</td> <td>Zoliflodacin</td> <td>None</td> <td>NaN</td> <td>None</td> <td>NaN</td> <td>None</td> </tr> </tbody> </table> </div> </div> <div class="section level2"> <h2 id="conclusion">Conclusion<a class="anchor" aria-label="anchor" href="#conclusion"></a> </h2> <p>With the <code>AMR</code> Python package, Python users can now effortlessly call R functions from the <code>AMR</code> R package. This eliminates the need for complex <code>rpy2</code> configurations and provides a clean, easy-to-use interface for antimicrobial resistance analysis. The examples provided above demonstrate how this can be applied to typical workflows, such as standardising microorganism and antimicrobial names or calculating resistance.</p> <p>By just running <code>import AMR</code>, users can seamlessly integrate the robust features of the R <code>AMR</code> package into Python workflows.</p> <p>Whether you’re cleaning data or analysing resistance patterns, the <code>AMR</code> Python package makes it easy to work with AMR data in Python.</p> </div> </main><aside class="col-md-3"><nav id="toc" aria-label="Table of contents"><h2>On this page</h2> </nav></aside> </div> <footer><div class="pkgdown-footer-left"> <p><code>AMR</code> (for R). Free and open-source, licenced under the <a target="_blank" href="https://github.com/msberends/AMR/blob/main/LICENSE" class="external-link">GNU General Public License version 2.0 (GPL-2)</a>.<br>Developed at the <a target="_blank" href="https://www.rug.nl" class="external-link">University of Groningen</a> and <a target="_blank" href="https://www.umcg.nl" class="external-link">University Medical Center Groningen</a> in The Netherlands.</p> </div> <div class="pkgdown-footer-right"> <p><a target="_blank" href="https://www.rug.nl" class="external-link"><img src="https://amr-for-r.org/logo_rug.svg" style="max-width: 150px;"></a><a target="_blank" href="https://www.umcg.nl" class="external-link"><img src="https://amr-for-r.org/logo_umcg.svg" style="max-width: 150px;"></a></p> </div> </footer> </div> </body> </html>