With the function mdro(), you can determine multi-drug resistant organisms (MDRO).

Type of input

The mdro() takes a data set as input, such as a regular data.frame. It automatically determines the right columns for info about your isolates, like the name of the species and all columns with results of antimicrobial agents. See the help page for more info about how to set the right settings for your data with the command ?mdro.

For WHONET data (and most other data), all settings are automatically set correctly.

Guidelines

The function support multiple guidelines. You can select a guideline with the guideline parameter. Currently supported guidelines are (case-insensitive):

  • guideline = "CMI2012" (default)

    Magiorakos AP, Srinivasan A et al. “Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.” Clinical Microbiology and Infection (2012) (link)
  • guideline = "EUCAST"

    The European international guideline - EUCAST Expert Rules Version 3.1 “Intrinsic Resistance and Exceptional Phenotypes Tables” (link)
  • guideline = "TB"

    The international guideline for multi-drug resistant tuberculosis - World Health Organization “Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis” (link)
  • guideline = "MRGN"

    The German national guideline - Mueller et al. (2015) Antimicrobial Resistance and Infection Control 4:7. (link)
  • guideline = "BRMO"

    The Dutch national guideline - Rijksinstituut voor Volksgezondheid en Milieu “WIP-richtlijn BRMO (Bijzonder Resistente Micro-Organismen) [ZKH]” (link)

Examples

The mdro() function always returns an ordered factor. For example, the output of the default guideline by Magiorakos et al. returns a factor with levels ‘Negative’, ‘MDR’, ‘XDR’ or ‘PDR’ in that order. If we test that guideline on the included example_isolates data set, we get:

library(dplyr) # to support pipes: %>%

Frequency table

Class: factor > ordered (numeric)
Length: 2,000 (of which NA: 289 = 14.45%)
Levels: 4: Negative < Multi-drug-resistant (MDR) < Extensively drug-resistant …
Unique: 2

Item Count Percent Cum. Count Cum. Percent
1 Negative 1596 93.28% 1596 93.28%
2 Multi-drug-resistant (MDR) 115 6.72% 1711 100.00%

For another example, I will create a data set to determine multi-drug resistant TB:

Because all column names are automatically verified for valid drug names or codes, this would have worked exactly the same:

The data set now looks like this:

We can now add the interpretation of MDR-TB to our data set. You can use:

mdro(my_TB_data, guideline = "TB")

or its shortcut mdr_tb():

Create a frequency table of the results:

freq(my_TB_data$mdr)

Frequency table

Class: factor > ordered (numeric)
Length: 5,000 (of which NA: 0 = 0%)
Levels: 5: Negative < Mono-resistant < Poly-resistant < Multi-drug-resistant <…
Unique: 5

Item Count Percent Cum. Count Cum. Percent
1 Mono-resistant 3301 66.02% 3301 66.02%
2 Negative 629 12.58% 3930 78.60%
3 Multi-drug-resistant 596 11.92% 4526 90.52%
4 Poly-resistant 282 5.64% 4808 96.16%
5 Extensively drug-resistant 192 3.84% 5000 100.00%