mirror of
https://github.com/msberends/AMR.git
synced 2025-12-16 06:30:21 +01:00
1179 lines
58 KiB
Markdown
1179 lines
58 KiB
Markdown
# Antimicrobial Selectors
|
||
|
||
These functions allow for filtering rows and selecting columns based on
|
||
antimicrobial test results that are of a specific antimicrobial class or
|
||
group, without the need to define the columns or antimicrobial
|
||
abbreviations. They can be used in base R, tidyverse, tidymodels, and
|
||
`data.table`.
|
||
|
||
Simply puy, if you have a column name that resembles an antimicrobial
|
||
drug, it will be picked up by any of these functions that matches its
|
||
pharmaceutical class, code or name: column names "cefazolin", "kefzol",
|
||
"CZO" and "J01DB04" would all be included in the following selection:
|
||
|
||
library(dplyr)
|
||
my_data_with_all_these_columns %>%
|
||
select(cephalosporins())
|
||
|
||
## Usage
|
||
|
||
``` r
|
||
aminoglycosides(only_sir_columns = FALSE, only_treatable = TRUE,
|
||
return_all = TRUE, ...)
|
||
|
||
aminopenicillins(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
antifungals(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
antimycobacterials(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
betalactams(only_sir_columns = FALSE, only_treatable = TRUE,
|
||
return_all = TRUE, ...)
|
||
|
||
betalactams_with_inhibitor(only_sir_columns = FALSE, return_all = TRUE,
|
||
...)
|
||
|
||
carbapenems(only_sir_columns = FALSE, only_treatable = TRUE,
|
||
return_all = TRUE, ...)
|
||
|
||
cephalosporins(only_sir_columns = FALSE, only_treatable = TRUE,
|
||
return_all = TRUE, ...)
|
||
|
||
cephalosporins_1st(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
cephalosporins_2nd(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
cephalosporins_3rd(only_sir_columns = FALSE, only_treatable = TRUE,
|
||
return_all = TRUE, ...)
|
||
|
||
cephalosporins_4th(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
cephalosporins_5th(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
fluoroquinolones(only_sir_columns = FALSE, only_treatable = TRUE,
|
||
return_all = TRUE, ...)
|
||
|
||
glycopeptides(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
isoxazolylpenicillins(only_sir_columns = FALSE, only_treatable = TRUE,
|
||
return_all = TRUE, ...)
|
||
|
||
lincosamides(only_sir_columns = FALSE, only_treatable = TRUE,
|
||
return_all = TRUE, ...)
|
||
|
||
lipoglycopeptides(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
macrolides(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
monobactams(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
nitrofurans(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
oxazolidinones(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
penicillins(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
phenicols(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
polymyxins(only_sir_columns = FALSE, only_treatable = TRUE,
|
||
return_all = TRUE, ...)
|
||
|
||
quinolones(only_sir_columns = FALSE, only_treatable = TRUE,
|
||
return_all = TRUE, ...)
|
||
|
||
rifamycins(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
streptogramins(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
sulfonamides(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
tetracyclines(only_sir_columns = FALSE, only_treatable = TRUE,
|
||
return_all = TRUE, ...)
|
||
|
||
trimethoprims(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
ureidopenicillins(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
amr_class(amr_class, only_sir_columns = FALSE, only_treatable = TRUE,
|
||
return_all = TRUE, ...)
|
||
|
||
amr_selector(filter, only_sir_columns = FALSE, only_treatable = TRUE,
|
||
return_all = TRUE, ...)
|
||
|
||
administrable_per_os(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
administrable_iv(only_sir_columns = FALSE, return_all = TRUE, ...)
|
||
|
||
not_intrinsic_resistant(only_sir_columns = FALSE, col_mo = NULL,
|
||
version_expected_phenotypes = 1.2, ...)
|
||
```
|
||
|
||
## Arguments
|
||
|
||
- only_sir_columns:
|
||
|
||
A [logical](https://rdrr.io/r/base/logical.html) to indicate whether
|
||
only antimicrobial columns must be included that were transformed to
|
||
class [sir](https://amr-for-r.org/reference/as.sir.md) on beforehand.
|
||
Defaults to `FALSE`.
|
||
|
||
- only_treatable:
|
||
|
||
A [logical](https://rdrr.io/r/base/logical.html) to indicate whether
|
||
antimicrobial drugs should be excluded that are only for laboratory
|
||
tests (default is `TRUE`), such as gentamicin-high (`GEH`) and
|
||
imipenem/EDTA (`IPE`).
|
||
|
||
- return_all:
|
||
|
||
A [logical](https://rdrr.io/r/base/logical.html) to indicate whether
|
||
all matched columns must be returned (default is `TRUE`). With
|
||
`FALSE`, only the first of each unique antimicrobial will be returned,
|
||
e.g. if both columns `"genta"` and `"gentamicin"` exist in the data,
|
||
only the first hit for gentamicin will be returned.
|
||
|
||
- ...:
|
||
|
||
Ignored, only in place to allow future extensions.
|
||
|
||
- amr_class:
|
||
|
||
An antimicrobial class or a part of it, such as `"carba"` and
|
||
`"carbapenems"`. The columns `group`, `atc_group1` and `atc_group2` of
|
||
the
|
||
[antimicrobials](https://amr-for-r.org/reference/antimicrobials.md)
|
||
data set will be searched (case-insensitive) for this value.
|
||
|
||
- filter:
|
||
|
||
An [expression](https://rdrr.io/r/base/expression.html) to be
|
||
evaluated in the
|
||
[antimicrobials](https://amr-for-r.org/reference/antimicrobials.md)
|
||
data set, such as `name %like% "trim"`.
|
||
|
||
- col_mo:
|
||
|
||
Column name of the names or codes of the microorganisms (see
|
||
[`as.mo()`](https://amr-for-r.org/reference/as.mo.md)) - the default
|
||
is the first column of class
|
||
[`mo`](https://amr-for-r.org/reference/as.mo.md). Values will be
|
||
coerced using [`as.mo()`](https://amr-for-r.org/reference/as.mo.md).
|
||
|
||
- version_expected_phenotypes:
|
||
|
||
The version number to use for the EUCAST Expected Phenotypes. Can be
|
||
"1.2".
|
||
|
||
## Value
|
||
|
||
When used inside selecting or filtering, this returns a
|
||
[character](https://rdrr.io/r/base/character.html) vector of column
|
||
names, with additional class `"amr_selector"`. When used individually,
|
||
this returns an ['ab' vector](https://amr-for-r.org/reference/as.ab.md)
|
||
with all possible antimicrobials that the function would be able to
|
||
select or filter.
|
||
|
||
## Details
|
||
|
||
These functions can be used in data set calls for selecting columns and
|
||
filtering rows. They work with base R, the Tidyverse, and `data.table`.
|
||
They are heavily inspired by the [Tidyverse selection
|
||
helpers](https://tidyselect.r-lib.org/reference/language.html) such as
|
||
[`everything()`](https://tidyselect.r-lib.org/reference/everything.html),
|
||
but are not limited to `dplyr` verbs. Nonetheless, they are very
|
||
convenient to use with `dplyr` functions such as
|
||
[`select()`](https://dplyr.tidyverse.org/reference/select.html),
|
||
[`filter()`](https://dplyr.tidyverse.org/reference/filter.html) and
|
||
[`summarise()`](https://dplyr.tidyverse.org/reference/summarise.html),
|
||
see *Examples*.
|
||
|
||
All selectors can also be used in `tidymodels` packages such as `recipe`
|
||
and `parsnip`. See for more info [our
|
||
tutorial](https://amr-for-r.org/articles/AMR_with_tidymodels.html) on
|
||
using antimicrobial selectors for predictive modelling.
|
||
|
||
All columns in the data in which these functions are called will be
|
||
searched for known antimicrobial names, abbreviations, brand names, and
|
||
codes (ATC, EARS-Net, WHO, etc.) according to the
|
||
[antimicrobials](https://amr-for-r.org/reference/antimicrobials.md) data
|
||
set. This means that a selector such as `aminoglycosides()` will pick up
|
||
column names like 'gen', 'genta', 'J01GB03', 'tobra', 'Tobracin', etc.
|
||
|
||
The `amr_class()` function can be used to filter/select on a manually
|
||
defined antimicrobial class. It searches for results in the
|
||
[antimicrobials](https://amr-for-r.org/reference/antimicrobials.md) data
|
||
set within the columns `group`, `atc_group1` and `atc_group2`.
|
||
|
||
The `administrable_per_os()` and `administrable_iv()` functions also
|
||
rely on the
|
||
[antimicrobials](https://amr-for-r.org/reference/antimicrobials.md) data
|
||
set - antimicrobials will be matched where a DDD (defined daily dose)
|
||
for resp. oral and IV treatment is available in the
|
||
[antimicrobials](https://amr-for-r.org/reference/antimicrobials.md) data
|
||
set.
|
||
|
||
The `amr_selector()` function can be used to internally filter the
|
||
[antimicrobials](https://amr-for-r.org/reference/antimicrobials.md) data
|
||
set on any results, see *Examples*. It allows for filtering on a (part
|
||
of) a certain name, and/or a group name or even a minimum of DDDs for
|
||
oral treatment. This function yields the highest flexibility, but is
|
||
also the least user-friendly, since it requires a hard-coded filter to
|
||
set.
|
||
|
||
The `not_intrinsic_resistant()` function can be used to only select
|
||
antimicrobials that pose no intrinsic resistance for the microorganisms
|
||
in the data set. For example, if a data set contains only microorganism
|
||
codes or names of *E. coli* and *K. pneumoniae* and contains a column
|
||
"vancomycin", this column will be removed (or rather, unselected) using
|
||
this function. It currently applies ['EUCAST Expected Resistant
|
||
Phenotypes'
|
||
v1.2](https://www.eucast.org/expert_rules_and_expected_phenotypes)
|
||
(2023) to determine intrinsic resistance, using the
|
||
[`eucast_rules()`](https://amr-for-r.org/reference/eucast_rules.md)
|
||
function internally. Because of this determination, this function is
|
||
quite slow in terms of performance.
|
||
|
||
## Full list of supported (antimicrobial) classes
|
||
|
||
- `aminoglycosides()` can select:
|
||
amikacin (AMK), amikacin/fosfomycin (AKF), apramycin (APR), arbekacin
|
||
(ARB), astromicin (AST), bekanamycin (BEK), dibekacin (DKB),
|
||
framycetin (FRM), gentamicin (GEN), gentamicin-high (GEH), habekacin
|
||
(HAB), hygromycin (HYG), isepamicin (ISE), kanamycin (KAN),
|
||
kanamycin-high (KAH), kanamycin/cephalexin (KAC), micronomicin (MCR),
|
||
neomycin (NEO), netilmicin (NET), pentisomicin (PIM), plazomicin
|
||
(PLZ), propikacin (PKA), ribostamycin (RST), sisomicin (SIS),
|
||
streptoduocin (STR), streptomycin (STR1), streptomycin-high (STH),
|
||
tobramycin (TOB), and tobramycin-high (TOH)
|
||
|
||
- `aminopenicillins()` can select:
|
||
amoxicillin (AMX) and ampicillin (AMP)
|
||
|
||
- `antifungals()` can select:
|
||
amorolfine (AMO), amphotericin B (AMB), amphotericin B-high (AMH),
|
||
anidulafungin (ANI), butoconazole (BUT), caspofungin (CAS), ciclopirox
|
||
(CIX), clotrimazole (CTR), econazole (ECO), fluconazole (FLU),
|
||
flucytosine (FCT), fosfluconazole (FFL), griseofulvin (GRI),
|
||
hachimycin (HCH), ibrexafungerp (IBX), isavuconazole (ISV),
|
||
isoconazole (ISO), itraconazole (ITR), ketoconazole (KET), manogepix
|
||
(MGX), micafungin (MIF), miconazole (MCZ), nystatin (NYS),
|
||
oteseconazole (OTE), pimaricin (PMR), posaconazole (POS), rezafungin
|
||
(RZF), ribociclib (RBC), sulconazole (SUC), terbinafine (TRB),
|
||
terconazole (TRC), and voriconazole (VOR)
|
||
|
||
- `antimycobacterials()` can select:
|
||
4-aminosalicylic acid (AMA), calcium aminosalicylate (CLA),
|
||
capreomycin (CAP), clofazimine (CLF), delamanid (DLM), enviomycin
|
||
(ENV), ethambutol (ETH), ethambutol/isoniazid (ETI), ethionamide
|
||
(ETI1), isoniazid (INH),
|
||
isoniazid/sulfamethoxazole/trimethoprim/pyridoxine (IST), morinamide
|
||
(MRN), p-aminosalicylic acid (PAS), pretomanid (PMD), protionamide
|
||
(PTH), pyrazinamide (PZA), rifabutin (RIB), rifampicin (RIF),
|
||
rifampicin/ethambutol/isoniazid (REI), rifampicin/isoniazid (RFI),
|
||
rifampicin/pyrazinamide/ethambutol/isoniazid (RPEI),
|
||
rifampicin/pyrazinamide/isoniazid (RPI), rifamycin (RFM), rifapentine
|
||
(RFP), sodium aminosalicylate (SDA), streptomycin/isoniazid (STI),
|
||
terizidone (TRZ), thioacetazone (TAT), thioacetazone/isoniazid (THI1),
|
||
tiocarlide (TCR), and viomycin (VIO)
|
||
|
||
- `betalactams()` can select:
|
||
amoxicillin (AMX), amoxicillin/clavulanic acid (AMC),
|
||
amoxicillin/sulbactam (AXS), ampicillin (AMP), ampicillin/sulbactam
|
||
(SAM), apalcillin (APL), aspoxicillin (APX), azidocillin (AZD),
|
||
azlocillin (AZL), aztreonam (ATM), aztreonam/avibactam (AZA),
|
||
aztreonam/nacubactam (ANC), bacampicillin (BAM), benzathine
|
||
benzylpenicillin (BNB), benzathine phenoxymethylpenicillin (BNP),
|
||
benzylpenicillin (PEN), benzylpenicillin screening test (PEN-S),
|
||
biapenem (BIA), carbenicillin (CRB), carindacillin (CRN), carumonam
|
||
(CAR), cefacetrile (CAC), cefaclor (CEC), cefadroxil (CFR), cefalexin
|
||
(LEX), cefaloridine (RID), cefalotin (CEP), cefamandole (MAN),
|
||
cefapirin (HAP), cefatrizine (CTZ), cefazedone (CZD), cefazolin (CZO),
|
||
cefcapene (CCP), cefcapene pivoxil (CCX), cefdinir (CDR), cefditoren
|
||
(DIT), cefditoren pivoxil (DIX), cefepime (FEP), cefepime/amikacin
|
||
(CFA), cefepime/clavulanic acid (CPC), cefepime/enmetazobactam (FPE),
|
||
cefepime/nacubactam (FNC), cefepime/taniborbactam (FTA),
|
||
cefepime/tazobactam (FPT), cefepime/zidebactam (FPZ), cefetamet (CAT),
|
||
cefetamet pivoxil (CPI), cefetecol (CCL), cefetrizole (CZL),
|
||
cefiderocol (FDC), cefixime (CFM), cefmenoxime (CMX), cefmetazole
|
||
(CMZ), cefodizime (DIZ), cefonicid (CID), cefoperazone (CFP),
|
||
cefoperazone/sulbactam (CSL), ceforanide (CND), cefoselis (CSE),
|
||
cefotaxime (CTX), cefotaxime screening test (CTX-S),
|
||
cefotaxime/clavulanic acid (CTC), cefotaxime/sulbactam (CTS),
|
||
cefotetan (CTT), cefotiam (CTF), cefotiam hexetil (CHE), cefovecin
|
||
(FOV), cefoxitin (FOX), cefoxitin screening test (FOX-S), cefozopran
|
||
(ZOP), cefpimizole (CFZ), cefpiramide (CPM), cefpirome (CPO),
|
||
cefpodoxime (CPD), cefpodoxime proxetil (CPX), cefpodoxime/clavulanic
|
||
acid (CDC), cefprozil (CPR), cefquinome (CEQ), cefroxadine (CRD),
|
||
cefsulodin (CFS), cefsumide (CSU), ceftaroline (CPT),
|
||
ceftaroline/avibactam (CPA), ceftazidime (CAZ), ceftazidime/avibactam
|
||
(CZA), ceftazidime/clavulanic acid (CCV), cefteram (CEM), cefteram
|
||
pivoxil (CPL), ceftezole (CTL), ceftibuten (CTB), ceftiofur (TIO),
|
||
ceftizoxime (CZX), ceftizoxime alapivoxil (CZP), ceftobiprole (BPR),
|
||
ceftobiprole medocaril (CFM1), ceftolozane/tazobactam (CZT),
|
||
ceftriaxone (CRO), ceftriaxone/beta-lactamase inhibitor (CEB),
|
||
cefuroxime (CXM), cefuroxime axetil (CXA), cephradine (CED),
|
||
ciclacillin (CIC), clometocillin (CLM), cloxacillin (CLO),
|
||
dicloxacillin (DIC), doripenem (DOR), epicillin (EPC), ertapenem
|
||
(ETP), flucloxacillin (FLC), hetacillin (HET), imipenem (IPM),
|
||
imipenem/EDTA (IPE), imipenem/relebactam (IMR), latamoxef (LTM),
|
||
lenampicillin (LEN), loracarbef (LOR), mecillinam (MEC), meropenem
|
||
(MEM), meropenem/nacubactam (MNC), meropenem/vaborbactam (MEV),
|
||
metampicillin (MTM), meticillin (MET), mezlocillin (MEZ),
|
||
mezlocillin/sulbactam (MSU), nafcillin (NAF), oxacillin (OXA),
|
||
oxacillin screening test (OXA-S), panipenem (PAN), penamecillin (PNM),
|
||
penicillin/novobiocin (PNO), penicillin/sulbactam (PSU), pheneticillin
|
||
(PHE), phenoxymethylpenicillin (PHN), piperacillin (PIP),
|
||
piperacillin/sulbactam (PIS), piperacillin/tazobactam (TZP),
|
||
piridicillin (PRC), pivampicillin (PVM), pivmecillinam (PME), procaine
|
||
benzylpenicillin (PRB), propicillin (PRP), razupenem (RZM), ritipenem
|
||
(RIT), ritipenem acoxil (RIA), sarmoxicillin (SRX), sulbenicillin
|
||
(SBC), sultamicillin (SLT6), talampicillin (TAL), taniborbactam (TAN),
|
||
tebipenem (TBP), temocillin (TEM), ticarcillin (TIC),
|
||
ticarcillin/clavulanic acid (TCC), and tigemonam (TMN)
|
||
|
||
- `betalactams_with_inhibitor()` can select:
|
||
amoxicillin/clavulanic acid (AMC), amoxicillin/sulbactam (AXS),
|
||
ampicillin/sulbactam (SAM), aztreonam/avibactam (AZA),
|
||
aztreonam/nacubactam (ANC), cefepime/amikacin (CFA),
|
||
cefepime/clavulanic acid (CPC), cefepime/enmetazobactam (FPE),
|
||
cefepime/nacubactam (FNC), cefepime/taniborbactam (FTA),
|
||
cefepime/tazobactam (FPT), cefepime/zidebactam (FPZ),
|
||
cefoperazone/sulbactam (CSL), cefotaxime/clavulanic acid (CTC),
|
||
cefotaxime/sulbactam (CTS), cefpodoxime/clavulanic acid (CDC),
|
||
ceftaroline/avibactam (CPA), ceftazidime/avibactam (CZA),
|
||
ceftazidime/clavulanic acid (CCV), ceftolozane/tazobactam (CZT),
|
||
ceftriaxone/beta-lactamase inhibitor (CEB), imipenem/relebactam (IMR),
|
||
meropenem/nacubactam (MNC), meropenem/vaborbactam (MEV),
|
||
mezlocillin/sulbactam (MSU), penicillin/novobiocin (PNO),
|
||
penicillin/sulbactam (PSU), piperacillin/sulbactam (PIS),
|
||
piperacillin/tazobactam (TZP), and ticarcillin/clavulanic acid (TCC)
|
||
|
||
- `carbapenems()` can select:
|
||
biapenem (BIA), doripenem (DOR), ertapenem (ETP), imipenem (IPM),
|
||
imipenem/EDTA (IPE), imipenem/relebactam (IMR), meropenem (MEM),
|
||
meropenem/nacubactam (MNC), meropenem/vaborbactam (MEV), panipenem
|
||
(PAN), razupenem (RZM), ritipenem (RIT), ritipenem acoxil (RIA),
|
||
taniborbactam (TAN), and tebipenem (TBP)
|
||
|
||
- `cephalosporins()` can select:
|
||
cefacetrile (CAC), cefaclor (CEC), cefadroxil (CFR), cefalexin (LEX),
|
||
cefaloridine (RID), cefalotin (CEP), cefamandole (MAN), cefapirin
|
||
(HAP), cefatrizine (CTZ), cefazedone (CZD), cefazolin (CZO), cefcapene
|
||
(CCP), cefcapene pivoxil (CCX), cefdinir (CDR), cefditoren (DIT),
|
||
cefditoren pivoxil (DIX), cefepime (FEP), cefepime/amikacin (CFA),
|
||
cefepime/clavulanic acid (CPC), cefepime/enmetazobactam (FPE),
|
||
cefepime/nacubactam (FNC), cefepime/taniborbactam (FTA),
|
||
cefepime/tazobactam (FPT), cefepime/zidebactam (FPZ), cefetamet (CAT),
|
||
cefetamet pivoxil (CPI), cefetecol (CCL), cefetrizole (CZL),
|
||
cefiderocol (FDC), cefixime (CFM), cefmenoxime (CMX), cefmetazole
|
||
(CMZ), cefodizime (DIZ), cefonicid (CID), cefoperazone (CFP),
|
||
cefoperazone/sulbactam (CSL), ceforanide (CND), cefoselis (CSE),
|
||
cefotaxime (CTX), cefotaxime screening test (CTX-S),
|
||
cefotaxime/clavulanic acid (CTC), cefotaxime/sulbactam (CTS),
|
||
cefotetan (CTT), cefotiam (CTF), cefotiam hexetil (CHE), cefovecin
|
||
(FOV), cefoxitin (FOX), cefoxitin screening test (FOX-S), cefozopran
|
||
(ZOP), cefpimizole (CFZ), cefpiramide (CPM), cefpirome (CPO),
|
||
cefpodoxime (CPD), cefpodoxime proxetil (CPX), cefpodoxime/clavulanic
|
||
acid (CDC), cefprozil (CPR), cefquinome (CEQ), cefroxadine (CRD),
|
||
cefsulodin (CFS), cefsumide (CSU), ceftaroline (CPT),
|
||
ceftaroline/avibactam (CPA), ceftazidime (CAZ), ceftazidime/avibactam
|
||
(CZA), ceftazidime/clavulanic acid (CCV), cefteram (CEM), cefteram
|
||
pivoxil (CPL), ceftezole (CTL), ceftibuten (CTB), ceftiofur (TIO),
|
||
ceftizoxime (CZX), ceftizoxime alapivoxil (CZP), ceftobiprole (BPR),
|
||
ceftobiprole medocaril (CFM1), ceftolozane/tazobactam (CZT),
|
||
ceftriaxone (CRO), ceftriaxone/beta-lactamase inhibitor (CEB),
|
||
cefuroxime (CXM), cefuroxime axetil (CXA), cephradine (CED), latamoxef
|
||
(LTM), and loracarbef (LOR)
|
||
|
||
- `cephalosporins_1st()` can select:
|
||
cefacetrile (CAC), cefadroxil (CFR), cefalexin (LEX), cefaloridine
|
||
(RID), cefalotin (CEP), cefapirin (HAP), cefatrizine (CTZ), cefazedone
|
||
(CZD), cefazolin (CZO), cefroxadine (CRD), ceftezole (CTL), and
|
||
cephradine (CED)
|
||
|
||
- `cephalosporins_2nd()` can select:
|
||
cefaclor (CEC), cefamandole (MAN), cefmetazole (CMZ), cefonicid (CID),
|
||
ceforanide (CND), cefotetan (CTT), cefotiam (CTF), cefoxitin (FOX),
|
||
cefoxitin screening test (FOX-S), cefprozil (CPR), cefuroxime (CXM),
|
||
cefuroxime axetil (CXA), and loracarbef (LOR)
|
||
|
||
- `cephalosporins_3rd()` can select:
|
||
cefcapene (CCP), cefcapene pivoxil (CCX), cefdinir (CDR), cefditoren
|
||
(DIT), cefditoren pivoxil (DIX), cefetamet (CAT), cefetamet pivoxil
|
||
(CPI), cefixime (CFM), cefmenoxime (CMX), cefodizime (DIZ),
|
||
cefoperazone (CFP), cefoperazone/sulbactam (CSL), cefotaxime (CTX),
|
||
cefotaxime screening test (CTX-S), cefotaxime/clavulanic acid (CTC),
|
||
cefotaxime/sulbactam (CTS), cefotiam hexetil (CHE), cefovecin (FOV),
|
||
cefpimizole (CFZ), cefpiramide (CPM), cefpodoxime (CPD), cefpodoxime
|
||
proxetil (CPX), cefpodoxime/clavulanic acid (CDC), cefsulodin (CFS),
|
||
ceftazidime (CAZ), ceftazidime/avibactam (CZA), ceftazidime/clavulanic
|
||
acid (CCV), cefteram (CEM), cefteram pivoxil (CPL), ceftibuten (CTB),
|
||
ceftiofur (TIO), ceftizoxime (CZX), ceftizoxime alapivoxil (CZP),
|
||
ceftriaxone (CRO), ceftriaxone/beta-lactamase inhibitor (CEB), and
|
||
latamoxef (LTM)
|
||
|
||
- `cephalosporins_4th()` can select:
|
||
cefepime (FEP), cefepime/amikacin (CFA), cefepime/clavulanic acid
|
||
(CPC), cefepime/enmetazobactam (FPE), cefepime/nacubactam (FNC),
|
||
cefepime/taniborbactam (FTA), cefepime/tazobactam (FPT),
|
||
cefepime/zidebactam (FPZ), cefetecol (CCL), cefoselis (CSE),
|
||
cefozopran (ZOP), cefpirome (CPO), and cefquinome (CEQ)
|
||
|
||
- `cephalosporins_5th()` can select:
|
||
ceftaroline (CPT), ceftaroline/avibactam (CPA), ceftobiprole (BPR),
|
||
ceftobiprole medocaril (CFM1), and ceftolozane/tazobactam (CZT)
|
||
|
||
- `fluoroquinolones()` can select:
|
||
besifloxacin (BES), ciprofloxacin (CIP), ciprofloxacin/metronidazole
|
||
(CIM), ciprofloxacin/ornidazole (CIO), ciprofloxacin/tinidazole (CIT),
|
||
clinafloxacin (CLX), danofloxacin (DAN), delafloxacin (DFX),
|
||
difloxacin (DIF), enoxacin (ENX), enrofloxacin (ENR), finafloxacin
|
||
(FIN), fleroxacin (FLE), garenoxacin (GRN), gatifloxacin (GAT),
|
||
gemifloxacin (GEM), grepafloxacin (GRX), lascufloxacin (LSC),
|
||
levofloxacin (LVX), levofloxacin/ornidazole (LEO), levonadifloxacin
|
||
(LND), lomefloxacin (LOM), marbofloxacin (MAR), metioxate (MXT),
|
||
miloxacin (MIL), moxifloxacin (MFX), nadifloxacin (NAD), nemonoxacin
|
||
(NEM), nifuroquine (NIF), nitroxoline (NTR), norfloxacin (NOR),
|
||
norfloxacin screening test (NOR-S), norfloxacin/metronidazole (NME),
|
||
norfloxacin/tinidazole (NTI), ofloxacin (OFX), ofloxacin/ornidazole
|
||
(OOR), orbifloxacin (ORB), pazufloxacin (PAZ), pefloxacin (PEF),
|
||
pefloxacin screening test (PEF-S), pradofloxacin (PRA), premafloxacin
|
||
(PRX), prulifloxacin (PRU), rufloxacin (RFL), sarafloxacin (SAR),
|
||
sitafloxacin (SIT), sparfloxacin (SPX), temafloxacin (TMX),
|
||
tilbroquinol (TBQ), tioxacin (TXC), tosufloxacin (TFX), and
|
||
trovafloxacin (TVA)
|
||
|
||
- `glycopeptides()` can select:
|
||
avoparcin (AVO), bleomycin (BLM), dalbavancin (DAL), norvancomycin
|
||
(NVA), oritavancin (ORI), ramoplanin (RAM), teicoplanin (TEC),
|
||
teicoplanin-macromethod (TCM), telavancin (TLV), vancomycin (VAN), and
|
||
vancomycin-macromethod (VAM)
|
||
|
||
- `isoxazolylpenicillins()` can select:
|
||
cloxacillin (CLO), dicloxacillin (DIC), flucloxacillin (FLC),
|
||
meticillin (MET), oxacillin (OXA), and oxacillin screening test
|
||
(OXA-S)
|
||
|
||
- `lincosamides()` can select:
|
||
clindamycin (CLI), lincomycin (LIN), and pirlimycin (PRL)
|
||
|
||
- `lipoglycopeptides()` can select:
|
||
dalbavancin (DAL), oritavancin (ORI), and telavancin (TLV)
|
||
|
||
- `macrolides()` can select:
|
||
acetylmidecamycin (ACM), acetylspiramycin (ASP), azithromycin (AZM),
|
||
clarithromycin (CLR), dirithromycin (DIR), erythromycin (ERY),
|
||
flurithromycin (FLR1), gamithromycin (GAM), josamycin (JOS),
|
||
kitasamycin (KIT), meleumycin (MEL), midecamycin (MID), miocamycin
|
||
(MCM), nafithromycin (ZWK), oleandomycin (OLE), rokitamycin (ROK),
|
||
roxithromycin (RXT), solithromycin (SOL), spiramycin (SPI),
|
||
telithromycin (TLT), tildipirosin (TIP), tilmicosin (TIL),
|
||
troleandomycin (TRL), tulathromycin (TUL), tylosin (TYL), and
|
||
tylvalosin (TYL1)
|
||
|
||
- `monobactams()` can select:
|
||
aztreonam (ATM), aztreonam/avibactam (AZA), aztreonam/nacubactam
|
||
(ANC), carumonam (CAR), and tigemonam (TMN)
|
||
|
||
- `nitrofurans()` can select:
|
||
furazidin (FUR), furazolidone (FRZ), nifurtoinol (NFR), nitrofurantoin
|
||
(NIT), and nitrofurazone (NIZ)
|
||
|
||
- `oxazolidinones()` can select:
|
||
cadazolid (CDZ), cycloserine (CYC), linezolid (LNZ), tedizolid (TZD),
|
||
and thiacetazone (THA)
|
||
|
||
- `penicillins()` can select:
|
||
amoxicillin (AMX), amoxicillin/clavulanic acid (AMC),
|
||
amoxicillin/sulbactam (AXS), ampicillin (AMP), ampicillin/sulbactam
|
||
(SAM), apalcillin (APL), aspoxicillin (APX), azidocillin (AZD),
|
||
azlocillin (AZL), bacampicillin (BAM), benzathine benzylpenicillin
|
||
(BNB), benzathine phenoxymethylpenicillin (BNP), benzylpenicillin
|
||
(PEN), benzylpenicillin screening test (PEN-S), carbenicillin (CRB),
|
||
carindacillin (CRN), ciclacillin (CIC), clometocillin (CLM),
|
||
cloxacillin (CLO), dicloxacillin (DIC), epicillin (EPC),
|
||
flucloxacillin (FLC), hetacillin (HET), lenampicillin (LEN),
|
||
mecillinam (MEC), metampicillin (MTM), meticillin (MET), mezlocillin
|
||
(MEZ), mezlocillin/sulbactam (MSU), nafcillin (NAF), oxacillin (OXA),
|
||
oxacillin screening test (OXA-S), penamecillin (PNM),
|
||
penicillin/novobiocin (PNO), penicillin/sulbactam (PSU), pheneticillin
|
||
(PHE), phenoxymethylpenicillin (PHN), piperacillin (PIP),
|
||
piperacillin/sulbactam (PIS), piperacillin/tazobactam (TZP),
|
||
piridicillin (PRC), pivampicillin (PVM), pivmecillinam (PME), procaine
|
||
benzylpenicillin (PRB), propicillin (PRP), sarmoxicillin (SRX),
|
||
sulbenicillin (SBC), sultamicillin (SLT6), talampicillin (TAL),
|
||
temocillin (TEM), ticarcillin (TIC), and ticarcillin/clavulanic acid
|
||
(TCC)
|
||
|
||
- `phenicols()` can select:
|
||
chloramphenicol (CHL), florfenicol (FLR), and thiamphenicol (THI)
|
||
|
||
- `polymyxins()` can select:
|
||
colistin (COL), polymyxin B (PLB), and polymyxin B/polysorbate 80
|
||
(POP)
|
||
|
||
- `quinolones()` can select:
|
||
besifloxacin (BES), cinoxacin (CIN), ciprofloxacin (CIP),
|
||
ciprofloxacin/metronidazole (CIM), ciprofloxacin/ornidazole (CIO),
|
||
ciprofloxacin/tinidazole (CIT), clinafloxacin (CLX), danofloxacin
|
||
(DAN), delafloxacin (DFX), difloxacin (DIF), enoxacin (ENX),
|
||
enrofloxacin (ENR), finafloxacin (FIN), fleroxacin (FLE), flumequine
|
||
(FLM), garenoxacin (GRN), gatifloxacin (GAT), gemifloxacin (GEM),
|
||
grepafloxacin (GRX), lascufloxacin (LSC), levofloxacin (LVX),
|
||
levofloxacin/ornidazole (LEO), levonadifloxacin (LND), lomefloxacin
|
||
(LOM), marbofloxacin (MAR), metioxate (MXT), miloxacin (MIL),
|
||
moxifloxacin (MFX), nadifloxacin (NAD), nalidixic acid (NAL),
|
||
nalidixic acid screening test (NAL-S), nemonoxacin (NEM), nifuroquine
|
||
(NIF), nitroxoline (NTR), norfloxacin (NOR), norfloxacin screening
|
||
test (NOR-S), norfloxacin/metronidazole (NME), norfloxacin/tinidazole
|
||
(NTI), ofloxacin (OFX), ofloxacin/ornidazole (OOR), orbifloxacin
|
||
(ORB), oxolinic acid (OXO), pazufloxacin (PAZ), pefloxacin (PEF),
|
||
pefloxacin screening test (PEF-S), pipemidic acid (PPA), piromidic
|
||
acid (PIR), pradofloxacin (PRA), premafloxacin (PRX), prulifloxacin
|
||
(PRU), rosoxacin (ROS), rufloxacin (RFL), sarafloxacin (SAR),
|
||
sitafloxacin (SIT), sparfloxacin (SPX), temafloxacin (TMX),
|
||
tilbroquinol (TBQ), tioxacin (TXC), tosufloxacin (TFX), and
|
||
trovafloxacin (TVA)
|
||
|
||
- `rifamycins()` can select:
|
||
rifabutin (RIB), rifampicin (RIF), rifampicin/ethambutol/isoniazid
|
||
(REI), rifampicin/isoniazid (RFI),
|
||
rifampicin/pyrazinamide/ethambutol/isoniazid (RPEI),
|
||
rifampicin/pyrazinamide/isoniazid (RPI), rifamycin (RFM), and
|
||
rifapentine (RFP)
|
||
|
||
- `streptogramins()` can select:
|
||
pristinamycin (PRI) and quinupristin/dalfopristin (QDA)
|
||
|
||
- `sulfonamides()` can select:
|
||
brodimoprim (BDP), sulfadiazine (SDI), sulfadiazine/tetroxoprim (SLT),
|
||
sulfadimethoxine (SUD), sulfadimidine (SDM), sulfafurazole (SLF),
|
||
sulfaisodimidine (SLF1), sulfalene (SLF2), sulfamazone (SZO),
|
||
sulfamerazine (SLF3), sulfamethizole (SLF4), sulfamethoxazole (SMX),
|
||
sulfamethoxypyridazine (SLF5), sulfametomidine (SLF6),
|
||
sulfametoxydiazine (SLF7), sulfamoxole (SLF8), sulfanilamide (SLF9),
|
||
sulfaperin (SLF10), sulfaphenazole (SLF11), sulfapyridine (SLF12),
|
||
sulfathiazole (SUT), and sulfathiourea (SLF13)
|
||
|
||
- `tetracyclines()` can select:
|
||
cetocycline (CTO), chlortetracycline (CTE), clomocycline (CLM1),
|
||
demeclocycline (DEM), doxycycline (DOX), eravacycline (ERV),
|
||
lymecycline (LYM), metacycline (MTC), minocycline (MNO), omadacycline
|
||
(OMC), oxytetracycline (OXY), penimepicycline (PNM1), rolitetracycline
|
||
(RLT), sarecycline (SRC), tetracycline (TCY), tetracycline screening
|
||
test (TCY-S), and tigecycline (TGC)
|
||
|
||
- `trimethoprims()` can select:
|
||
brodimoprim (BDP), sulfadiazine (SDI), sulfadiazine/tetroxoprim (SLT),
|
||
sulfadiazine/trimethoprim (SLT1), sulfadimethoxine (SUD),
|
||
sulfadimidine (SDM), sulfadimidine/trimethoprim (SLT2), sulfafurazole
|
||
(SLF), sulfaisodimidine (SLF1), sulfalene (SLF2), sulfamazone (SZO),
|
||
sulfamerazine (SLF3), sulfamerazine/trimethoprim (SLT3),
|
||
sulfamethizole (SLF4), sulfamethoxazole (SMX), sulfamethoxypyridazine
|
||
(SLF5), sulfametomidine (SLF6), sulfametoxydiazine (SLF7),
|
||
sulfametrole/trimethoprim (SLT4), sulfamoxole (SLF8),
|
||
sulfamoxole/trimethoprim (SLT5), sulfanilamide (SLF9), sulfaperin
|
||
(SLF10), sulfaphenazole (SLF11), sulfapyridine (SLF12), sulfathiazole
|
||
(SUT), sulfathiourea (SLF13), trimethoprim (TMP), and
|
||
trimethoprim/sulfamethoxazole (SXT)
|
||
|
||
- `ureidopenicillins()` can select:
|
||
azlocillin (AZL), mezlocillin (MEZ), piperacillin (PIP), and
|
||
piperacillin/tazobactam (TZP)
|
||
|
||
## Download Our Reference Data
|
||
|
||
All reference data sets in the AMR package - including information on
|
||
microorganisms, antimicrobials, and clinical breakpoints - are freely
|
||
available for download in multiple formats: R, MS Excel, Apache Feather,
|
||
Apache Parquet, SPSS, and Stata.
|
||
|
||
For maximum compatibility, we also provide machine-readable,
|
||
tab-separated plain text files suitable for use in any software,
|
||
including laboratory information systems.
|
||
|
||
Visit [our website for direct download
|
||
links](https://amr-for-r.org/articles/datasets.html), or explore the
|
||
actual files in [our GitHub
|
||
repository](https://github.com/msberends/AMR/tree/main/data-raw/datasets).
|
||
|
||
## Examples
|
||
|
||
``` r
|
||
# `example_isolates` is a data set available in the AMR package.
|
||
# See ?example_isolates.
|
||
example_isolates
|
||
#> # A tibble: 2,000 × 46
|
||
#> date patient age gender ward mo PEN OXA FLC AMX
|
||
#> <date> <chr> <dbl> <chr> <chr> <mo> <sir> <sir> <sir> <sir>
|
||
#> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
|
||
#> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
|
||
#> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
|
||
#> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
|
||
#> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
|
||
#> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
|
||
#> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
|
||
#> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
|
||
#> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA
|
||
#> 10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA
|
||
#> # ℹ 1,990 more rows
|
||
#> # ℹ 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>, FEP <sir>,
|
||
#> # CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>, GEN <sir>,
|
||
#> # TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>, NIT <sir>,
|
||
#> # FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>, TEC <sir>,
|
||
#> # TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>, AZM <sir>,
|
||
#> # IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>, MUP <sir>, …
|
||
|
||
|
||
# you can use the selectors separately to retrieve all possible antimicrobials:
|
||
carbapenems()
|
||
#> ℹ in `carbapenems()`: Imipenem/EDTA (`IPE`) and meropenem/nacubactam
|
||
#> (`MNC`) are not included since `only_treatable = TRUE`.
|
||
#> ℹ This 'ab' vector was retrieved using `carbapenems()`, which should
|
||
#> normally be used inside a `dplyr` verb or `data.frame` call, e.g.:
|
||
#> • your_data %>% select(carbapenems())
|
||
#> • your_data %>% select(column_a, column_b, carbapenems())
|
||
#> • your_data %>% filter(any(carbapenems() == "R"))
|
||
#> • your_data[, carbapenems()]
|
||
#> • your_data[, c("column_a", "column_b", carbapenems())]
|
||
#> Class 'ab'
|
||
#> [1] BIA DOR ETP IMR IPM MEM MEV PAN RIA RIT RZM TAN TBP
|
||
|
||
|
||
# Though they are primarily intended to use for selections and filters.
|
||
# Examples sections below are split into 'dplyr', 'base R', and 'data.table':
|
||
|
||
# \donttest{
|
||
if (FALSE) { # \dontrun{
|
||
# dplyr -------------------------------------------------------------------
|
||
|
||
library(dplyr, warn.conflicts = FALSE)
|
||
|
||
example_isolates %>% select(carbapenems())
|
||
|
||
# select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB'
|
||
example_isolates %>% select(mo, aminoglycosides())
|
||
|
||
# you can combine selectors like you are used with tidyverse
|
||
# e.g., for betalactams, but not the ones with an enzyme inhibitor:
|
||
example_isolates %>% select(betalactams(), -betalactams_with_inhibitor())
|
||
|
||
# select only antimicrobials with DDDs for oral treatment
|
||
example_isolates %>% select(administrable_per_os())
|
||
|
||
# get AMR for all aminoglycosides e.g., per ward:
|
||
example_isolates %>%
|
||
group_by(ward) %>%
|
||
summarise(across(aminoglycosides(),
|
||
resistance))
|
||
|
||
# You can combine selectors with '&' to be more specific:
|
||
example_isolates %>%
|
||
select(penicillins() & administrable_per_os())
|
||
|
||
# get AMR for only drugs that matter - no intrinsic resistance:
|
||
example_isolates %>%
|
||
filter(mo_genus() %in% c("Escherichia", "Klebsiella")) %>%
|
||
group_by(ward) %>%
|
||
summarise_at(not_intrinsic_resistant(),
|
||
resistance)
|
||
|
||
# get susceptibility for antimicrobials whose name contains "trim":
|
||
example_isolates %>%
|
||
filter(first_isolate()) %>%
|
||
group_by(ward) %>%
|
||
summarise(across(amr_selector(name %like% "trim"), susceptibility))
|
||
|
||
# this will select columns 'IPM' (imipenem) and 'MEM' (meropenem):
|
||
example_isolates %>%
|
||
select(carbapenems())
|
||
|
||
# this will select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB':
|
||
example_isolates %>%
|
||
select(mo, aminoglycosides())
|
||
|
||
# any() and all() work in dplyr's filter() too:
|
||
example_isolates %>%
|
||
filter(
|
||
any(aminoglycosides() == "R"),
|
||
all(cephalosporins_2nd() == "R")
|
||
)
|
||
|
||
# also works with c():
|
||
example_isolates %>%
|
||
filter(any(c(carbapenems(), aminoglycosides()) == "R"))
|
||
|
||
# not setting any/all will automatically apply all():
|
||
example_isolates %>%
|
||
filter(aminoglycosides() == "R")
|
||
|
||
# this will select columns 'mo' and all antimycobacterial drugs ('RIF'):
|
||
example_isolates %>%
|
||
select(mo, amr_class("mycobact"))
|
||
|
||
# get bug/drug combinations for only glycopeptides in Gram-positives:
|
||
example_isolates %>%
|
||
filter(mo_is_gram_positive()) %>%
|
||
select(mo, glycopeptides()) %>%
|
||
bug_drug_combinations() %>%
|
||
format()
|
||
|
||
data.frame(
|
||
some_column = "some_value",
|
||
J01CA01 = "S"
|
||
) %>% # ATC code of ampicillin
|
||
select(penicillins()) # only the 'J01CA01' column will be selected
|
||
|
||
# with recent versions of dplyr, this is all equal:
|
||
x <- example_isolates[carbapenems() == "R", ]
|
||
y <- example_isolates %>% filter(carbapenems() == "R")
|
||
z <- example_isolates %>% filter(if_all(carbapenems(), ~ .x == "R"))
|
||
identical(x, y) && identical(y, z)
|
||
|
||
} # }
|
||
# base R ------------------------------------------------------------------
|
||
|
||
# select columns 'IPM' (imipenem) and 'MEM' (meropenem)
|
||
example_isolates[, carbapenems()]
|
||
#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
|
||
#> # A tibble: 2,000 × 2
|
||
#> IPM MEM
|
||
#> <sir> <sir>
|
||
#> 1 NA NA
|
||
#> 2 NA NA
|
||
#> 3 NA NA
|
||
#> 4 NA NA
|
||
#> 5 NA NA
|
||
#> 6 NA NA
|
||
#> 7 NA NA
|
||
#> 8 NA NA
|
||
#> 9 NA NA
|
||
#> 10 NA NA
|
||
#> # ℹ 1,990 more rows
|
||
|
||
# select columns 'mo', 'AMK', 'GEN', 'KAN' and 'TOB'
|
||
example_isolates[, c("mo", aminoglycosides())]
|
||
#> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
|
||
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
|
||
#> # A tibble: 2,000 × 5
|
||
#> mo GEN TOB AMK KAN
|
||
#> <mo> <sir> <sir> <sir> <sir>
|
||
#> 1 B_ESCHR_COLI NA NA NA NA
|
||
#> 2 B_ESCHR_COLI NA NA NA NA
|
||
#> 3 B_STPHY_EPDR NA NA NA NA
|
||
#> 4 B_STPHY_EPDR NA NA NA NA
|
||
#> 5 B_STPHY_EPDR NA NA NA NA
|
||
#> 6 B_STPHY_EPDR NA NA NA NA
|
||
#> 7 B_STPHY_AURS NA S NA NA
|
||
#> 8 B_STPHY_AURS NA S NA NA
|
||
#> 9 B_STPHY_EPDR NA NA NA NA
|
||
#> 10 B_STPHY_EPDR NA NA NA NA
|
||
#> # ℹ 1,990 more rows
|
||
|
||
# select only antimicrobials with DDDs for oral treatment
|
||
example_isolates[, administrable_per_os()]
|
||
#> ℹ For `administrable_per_os()` using columns 'OXA' (oxacillin), 'FLC'
|
||
#> (flucloxacillin), 'AMX' (amoxicillin), 'AMC' (amoxicillin/clavulanic acid),
|
||
#> 'AMP' (ampicillin), 'CXM' (cefuroxime), 'KAN' (kanamycin), 'TMP'
|
||
#> (trimethoprim), 'NIT' (nitrofurantoin), 'FOS' (fosfomycin), 'LNZ'
|
||
#> (linezolid), 'CIP' (ciprofloxacin), 'MFX' (moxifloxacin), 'VAN'
|
||
#> (vancomycin), 'TCY' (tetracycline), 'DOX' (doxycycline), 'ERY'
|
||
#> (erythromycin), 'CLI' (clindamycin), 'AZM' (azithromycin), 'MTR'
|
||
#> (metronidazole), 'CHL' (chloramphenicol), 'COL' (colistin), and 'RIF'
|
||
#> (rifampicin)
|
||
#> # A tibble: 2,000 × 23
|
||
#> OXA FLC AMX AMC AMP CXM KAN TMP NIT FOS LNZ CIP MFX
|
||
#> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir>
|
||
#> 1 NA NA NA I NA I NA R NA NA R NA NA
|
||
#> 2 NA NA NA I NA I NA R NA NA R NA NA
|
||
#> 3 NA R NA NA NA R NA S NA NA NA NA NA
|
||
#> 4 NA R NA NA NA R NA S NA NA NA NA NA
|
||
#> 5 NA R NA NA NA R NA R NA NA NA NA NA
|
||
#> 6 NA R NA NA NA R NA R NA NA NA NA NA
|
||
#> 7 NA S R S R S NA R NA NA NA NA NA
|
||
#> 8 NA S R S R S NA R NA NA NA NA NA
|
||
#> 9 NA R NA NA NA R NA S NA NA NA S NA
|
||
#> 10 NA S NA NA NA S NA S NA NA NA S NA
|
||
#> # ℹ 1,990 more rows
|
||
#> # ℹ 10 more variables: VAN <sir>, TCY <sir>, DOX <sir>, ERY <sir>, CLI <sir>,
|
||
#> # AZM <sir>, MTR <sir>, CHL <sir>, COL <sir>, RIF <sir>
|
||
|
||
# filter using any() or all()
|
||
example_isolates[any(carbapenems() == "R"), ]
|
||
#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
|
||
#> # A tibble: 55 × 46
|
||
#> date patient age gender ward mo PEN OXA FLC AMX
|
||
#> <date> <chr> <dbl> <chr> <chr> <mo> <sir> <sir> <sir> <sir>
|
||
#> 1 2004-06-09 529296 69 M ICU B_ENTRC_FACM NA NA NA NA
|
||
#> 2 2004-06-09 529296 69 M ICU B_ENTRC_FACM NA NA NA NA
|
||
#> 3 2004-11-03 D65308 80 F ICU B_STNTR_MLTP R NA NA R
|
||
#> 4 2005-04-21 452212 82 F ICU B_ENTRC NA NA NA NA
|
||
#> 5 2005-04-22 452212 82 F ICU B_ENTRC NA NA NA NA
|
||
#> 6 2005-04-22 452212 82 F ICU B_ENTRC_FACM NA NA NA NA
|
||
#> 7 2007-02-21 8BBC46 61 F Clinical B_ENTRC_FACM NA NA NA NA
|
||
#> 8 2007-12-15 401043 72 M Clinical B_ENTRC_FACM NA NA NA NA
|
||
#> 9 2008-01-22 1710B8 82 M Clinical B_PROTS_MRBL R NA NA NA
|
||
#> 10 2008-01-22 1710B8 82 M Clinical B_PROTS_MRBL R NA NA NA
|
||
#> # ℹ 45 more rows
|
||
#> # ℹ 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>, FEP <sir>,
|
||
#> # CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>, GEN <sir>,
|
||
#> # TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>, NIT <sir>,
|
||
#> # FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>, TEC <sir>,
|
||
#> # TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>, AZM <sir>,
|
||
#> # IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>, MUP <sir>, …
|
||
subset(example_isolates, any(carbapenems() == "R"))
|
||
#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
|
||
#> # A tibble: 55 × 46
|
||
#> date patient age gender ward mo PEN OXA FLC AMX
|
||
#> <date> <chr> <dbl> <chr> <chr> <mo> <sir> <sir> <sir> <sir>
|
||
#> 1 2004-06-09 529296 69 M ICU B_ENTRC_FACM NA NA NA NA
|
||
#> 2 2004-06-09 529296 69 M ICU B_ENTRC_FACM NA NA NA NA
|
||
#> 3 2004-11-03 D65308 80 F ICU B_STNTR_MLTP R NA NA R
|
||
#> 4 2005-04-21 452212 82 F ICU B_ENTRC NA NA NA NA
|
||
#> 5 2005-04-22 452212 82 F ICU B_ENTRC NA NA NA NA
|
||
#> 6 2005-04-22 452212 82 F ICU B_ENTRC_FACM NA NA NA NA
|
||
#> 7 2007-02-21 8BBC46 61 F Clinical B_ENTRC_FACM NA NA NA NA
|
||
#> 8 2007-12-15 401043 72 M Clinical B_ENTRC_FACM NA NA NA NA
|
||
#> 9 2008-01-22 1710B8 82 M Clinical B_PROTS_MRBL R NA NA NA
|
||
#> 10 2008-01-22 1710B8 82 M Clinical B_PROTS_MRBL R NA NA NA
|
||
#> # ℹ 45 more rows
|
||
#> # ℹ 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>, FEP <sir>,
|
||
#> # CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>, GEN <sir>,
|
||
#> # TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>, NIT <sir>,
|
||
#> # FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>, TEC <sir>,
|
||
#> # TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>, AZM <sir>,
|
||
#> # IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>, MUP <sir>, …
|
||
|
||
# filter on any or all results in the carbapenem columns (i.e., IPM, MEM):
|
||
example_isolates[any(carbapenems()), ]
|
||
#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
|
||
#> ℹ Filtering any of columns 'IPM' and 'MEM' to contain value "S", "I" or "R"
|
||
#> # A tibble: 962 × 46
|
||
#> date patient age gender ward mo PEN OXA FLC AMX
|
||
#> <date> <chr> <dbl> <chr> <chr> <mo> <sir> <sir> <sir> <sir>
|
||
#> 1 2002-01-19 738003 71 M Clinical B_ESCHR_COLI R NA NA NA
|
||
#> 2 2002-01-19 738003 71 M Clinical B_ESCHR_COLI R NA NA NA
|
||
#> 3 2002-01-22 F35553 50 M ICU B_PROTS_MRBL R NA NA NA
|
||
#> 4 2002-01-22 F35553 50 M ICU B_PROTS_MRBL R NA NA NA
|
||
#> 5 2002-02-05 067927 45 F ICU B_SERRT_MRCS R NA NA R
|
||
#> 6 2002-02-05 067927 45 F ICU B_SERRT_MRCS R NA NA R
|
||
#> 7 2002-02-05 067927 45 F ICU B_SERRT_MRCS R NA NA R
|
||
#> 8 2002-02-27 066895 85 F Clinical B_KLBSL_PNMN R NA NA R
|
||
#> 9 2002-02-27 066895 85 F Clinical B_KLBSL_PNMN R NA NA R
|
||
#> 10 2002-03-08 4FC193 69 M Clinical B_ESCHR_COLI R NA NA R
|
||
#> # ℹ 952 more rows
|
||
#> # ℹ 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>, FEP <sir>,
|
||
#> # CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>, GEN <sir>,
|
||
#> # TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>, NIT <sir>,
|
||
#> # FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>, TEC <sir>,
|
||
#> # TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>, AZM <sir>,
|
||
#> # IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>, MUP <sir>, …
|
||
example_isolates[all(carbapenems()), ]
|
||
#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
|
||
#> ℹ Filtering all of columns 'IPM' and 'MEM' to contain value "S", "I" or "R"
|
||
#> # A tibble: 756 × 46
|
||
#> date patient age gender ward mo PEN OXA FLC AMX
|
||
#> <date> <chr> <dbl> <chr> <chr> <mo> <sir> <sir> <sir> <sir>
|
||
#> 1 2002-04-14 F30196 73 M Outpat… B_STRPT_GRPB S NA S S
|
||
#> 2 2003-04-08 114570 74 M ICU B_STRPT_PYGN S NA S S
|
||
#> 3 2003-04-08 114570 74 M ICU B_STRPT_GRPA S NA S S
|
||
#> 4 2003-04-08 114570 74 M ICU B_STRPT_GRPA S NA S S
|
||
#> 5 2003-08-14 F71508 0 F Clinic… B_STRPT_GRPB S NA S S
|
||
#> 6 2003-10-16 650870 63 F ICU B_ESCHR_COLI R NA NA R
|
||
#> 7 2003-10-20 F35553 52 M ICU B_ENTRBC_CLOC R NA NA R
|
||
#> 8 2003-10-20 F35553 52 M ICU B_ENTRBC_CLOC R NA NA R
|
||
#> 9 2003-11-04 2FC253 87 F ICU B_ESCHR_COLI R NA NA NA
|
||
#> 10 2003-11-04 2FC253 87 F ICU B_ESCHR_COLI R NA NA NA
|
||
#> # ℹ 746 more rows
|
||
#> # ℹ 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>, FEP <sir>,
|
||
#> # CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>, GEN <sir>,
|
||
#> # TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>, NIT <sir>,
|
||
#> # FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>, TEC <sir>,
|
||
#> # TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>, AZM <sir>,
|
||
#> # IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>, MUP <sir>, …
|
||
|
||
# filter with multiple antimicrobial selectors using c()
|
||
example_isolates[all(c(carbapenems(), aminoglycosides()) == "R"), ]
|
||
#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
|
||
#> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
|
||
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
|
||
#> # A tibble: 26 × 46
|
||
#> date patient age gender ward mo PEN OXA FLC AMX
|
||
#> <date> <chr> <dbl> <chr> <chr> <mo> <sir> <sir> <sir> <sir>
|
||
#> 1 2004-11-03 D65308 80 F ICU B_STNTR_MLTP R NA NA R
|
||
#> 2 2005-04-22 452212 82 F ICU B_ENTRC_FACM NA NA NA NA
|
||
#> 3 2007-02-21 8BBC46 61 F Clinical B_ENTRC_FACM NA NA NA NA
|
||
#> 4 2007-12-15 401043 72 M Clinical B_ENTRC_FACM NA NA NA NA
|
||
#> 5 2008-12-06 501361 43 F Clinical B_STNTR_MLTP R NA NA R
|
||
#> 6 2011-05-09 207325 82 F ICU B_ENTRC_FACM NA NA NA NA
|
||
#> 7 2012-03-12 582258 80 M ICU B_STPHY_CONS R R R R
|
||
#> 8 2012-05-19 C25552 89 F Outpati… B_STPHY_CONS R R R R
|
||
#> 9 2012-07-17 F05015 83 M ICU B_STPHY_CONS R R R R
|
||
#> 10 2012-07-20 404299 66 F Clinical B_STPHY_CONS R R R R
|
||
#> # ℹ 16 more rows
|
||
#> # ℹ 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>, FEP <sir>,
|
||
#> # CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>, GEN <sir>,
|
||
#> # TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>, NIT <sir>,
|
||
#> # FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>, TEC <sir>,
|
||
#> # TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>, AZM <sir>,
|
||
#> # IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>, MUP <sir>, …
|
||
|
||
# filter + select in one go: get penicillins in carbapenem-resistant strains
|
||
example_isolates[any(carbapenems() == "R"), penicillins()]
|
||
#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
|
||
#> ℹ For `penicillins()` using columns 'PEN' (benzylpenicillin), 'OXA'
|
||
#> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC'
|
||
#> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), and 'TZP'
|
||
#> (piperacillin/tazobactam)
|
||
#> # A tibble: 55 × 7
|
||
#> PEN OXA FLC AMX AMC AMP TZP
|
||
#> <sir> <sir> <sir> <sir> <sir> <sir> <sir>
|
||
#> 1 NA NA NA NA NA NA NA
|
||
#> 2 NA NA NA NA NA NA NA
|
||
#> 3 R NA NA R R R R
|
||
#> 4 NA NA NA NA NA NA R
|
||
#> 5 NA NA NA NA NA NA R
|
||
#> 6 NA NA NA NA NA NA R
|
||
#> 7 NA NA NA NA NA NA R
|
||
#> 8 NA NA NA NA NA NA R
|
||
#> 9 R NA NA NA S NA S
|
||
#> 10 R NA NA NA S NA S
|
||
#> # ℹ 45 more rows
|
||
|
||
# You can combine selectors with '&' to be more specific. For example,
|
||
# penicillins() would select benzylpenicillin ('peni G') and
|
||
# administrable_per_os() would select erythromycin. Yet, when combined these
|
||
# drugs are both omitted since benzylpenicillin is not administrable per os
|
||
# and erythromycin is not a penicillin:
|
||
example_isolates[, penicillins() & administrable_per_os()]
|
||
#> ℹ For `penicillins()` using columns 'PEN' (benzylpenicillin), 'OXA'
|
||
#> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC'
|
||
#> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), and 'TZP'
|
||
#> (piperacillin/tazobactam)
|
||
#> ℹ For `administrable_per_os()` using columns 'OXA' (oxacillin), 'FLC'
|
||
#> (flucloxacillin), 'AMX' (amoxicillin), 'AMC' (amoxicillin/clavulanic acid),
|
||
#> 'AMP' (ampicillin), 'CXM' (cefuroxime), 'KAN' (kanamycin), 'TMP'
|
||
#> (trimethoprim), 'NIT' (nitrofurantoin), 'FOS' (fosfomycin), 'LNZ'
|
||
#> (linezolid), 'CIP' (ciprofloxacin), 'MFX' (moxifloxacin), 'VAN'
|
||
#> (vancomycin), 'TCY' (tetracycline), 'DOX' (doxycycline), 'ERY'
|
||
#> (erythromycin), 'CLI' (clindamycin), 'AZM' (azithromycin), 'MTR'
|
||
#> (metronidazole), 'CHL' (chloramphenicol), 'COL' (colistin), and 'RIF'
|
||
#> (rifampicin)
|
||
#> # A tibble: 2,000 × 5
|
||
#> OXA FLC AMX AMC AMP
|
||
#> <sir> <sir> <sir> <sir> <sir>
|
||
#> 1 NA NA NA I NA
|
||
#> 2 NA NA NA I NA
|
||
#> 3 NA R NA NA NA
|
||
#> 4 NA R NA NA NA
|
||
#> 5 NA R NA NA NA
|
||
#> 6 NA R NA NA NA
|
||
#> 7 NA S R S R
|
||
#> 8 NA S R S R
|
||
#> 9 NA R NA NA NA
|
||
#> 10 NA S NA NA NA
|
||
#> # ℹ 1,990 more rows
|
||
|
||
# amr_selector() applies a filter in the `antimicrobials` data set and is thus
|
||
# very flexible. For instance, to select antimicrobials with an oral DDD
|
||
# of at least 1 gram:
|
||
example_isolates[, amr_selector(oral_ddd > 1 & oral_units == "g")]
|
||
#> ℹ For `amr_selector(oral_ddd > 1 & oral_units == "g")` using columns 'OXA'
|
||
#> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC'
|
||
#> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), 'KAN' (kanamycin), 'FOS'
|
||
#> (fosfomycin), 'LNZ' (linezolid), 'VAN' (vancomycin), 'ERY' (erythromycin),
|
||
#> 'CLI' (clindamycin), 'MTR' (metronidazole), and 'CHL' (chloramphenicol)
|
||
#> # A tibble: 2,000 × 13
|
||
#> OXA FLC AMX AMC AMP KAN FOS LNZ VAN ERY CLI MTR CHL
|
||
#> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir>
|
||
#> 1 NA NA NA I NA NA NA R R R R NA NA
|
||
#> 2 NA NA NA I NA NA NA R R R R NA NA
|
||
#> 3 NA R NA NA NA NA NA NA S R NA NA NA
|
||
#> 4 NA R NA NA NA NA NA NA S R NA NA NA
|
||
#> 5 NA R NA NA NA NA NA NA S R NA NA NA
|
||
#> 6 NA R NA NA NA NA NA NA S R R NA NA
|
||
#> 7 NA S R S R NA NA NA S S NA NA NA
|
||
#> 8 NA S R S R NA NA NA S S NA NA NA
|
||
#> 9 NA R NA NA NA NA NA NA S R NA NA NA
|
||
#> 10 NA S NA NA NA NA NA NA S S NA NA NA
|
||
#> # ℹ 1,990 more rows
|
||
|
||
|
||
# data.table --------------------------------------------------------------
|
||
|
||
# data.table is supported as well, just use it in the same way as with
|
||
# base R, but add `with = FALSE` if using a single AB selector.
|
||
|
||
if (require("data.table")) {
|
||
dt <- as.data.table(example_isolates)
|
||
|
||
# this does not work, it returns column *names*
|
||
dt[, carbapenems()]
|
||
}
|
||
#> Loading required package: data.table
|
||
#>
|
||
#> Attaching package: ‘data.table’
|
||
#> The following objects are masked from ‘package:dplyr’:
|
||
#>
|
||
#> between, first, last
|
||
#> The following objects are masked from ‘package:AMR’:
|
||
#>
|
||
#> %like%, like
|
||
#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
|
||
#> Warning: It should never be needed to print an antimicrobial selector class. Are you
|
||
#> using data.table? Then add the argument `with = FALSE`, see our examples at
|
||
#> `?amr_selector`.
|
||
#> Class 'amr_selector'
|
||
#> [1] IPM MEM
|
||
if (require("data.table")) {
|
||
# so `with = FALSE` is required
|
||
dt[, carbapenems(), with = FALSE]
|
||
}
|
||
#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
|
||
#> IPM MEM
|
||
#> <sir> <sir>
|
||
#> 1: <NA> <NA>
|
||
#> 2: <NA> <NA>
|
||
#> 3: <NA> <NA>
|
||
#> 4: <NA> <NA>
|
||
#> 5: <NA> <NA>
|
||
#> ---
|
||
#> 1996: <NA> <NA>
|
||
#> 1997: S S
|
||
#> 1998: S S
|
||
#> 1999: S S
|
||
#> 2000: S S
|
||
|
||
# for multiple selections or AB selectors, `with = FALSE` is not needed:
|
||
if (require("data.table")) {
|
||
dt[, c("mo", aminoglycosides())]
|
||
}
|
||
#> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
|
||
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
|
||
#> mo GEN TOB AMK KAN
|
||
#> <mo> <sir> <sir> <sir> <sir>
|
||
#> 1: B_ESCHR_COLI <NA> <NA> <NA> <NA>
|
||
#> 2: B_ESCHR_COLI <NA> <NA> <NA> <NA>
|
||
#> 3: B_STPHY_EPDR <NA> <NA> <NA> <NA>
|
||
#> 4: B_STPHY_EPDR <NA> <NA> <NA> <NA>
|
||
#> 5: B_STPHY_EPDR <NA> <NA> <NA> <NA>
|
||
#> ---
|
||
#> 1996: B_STRPT_PNMN R R R R
|
||
#> 1997: B_ESCHR_COLI S S S <NA>
|
||
#> 1998: B_STPHY_CONS S <NA> <NA> <NA>
|
||
#> 1999: B_ESCHR_COLI S S <NA> <NA>
|
||
#> 2000: B_KLBSL_PNMN S S <NA> <NA>
|
||
if (require("data.table")) {
|
||
dt[, c(carbapenems(), aminoglycosides())]
|
||
}
|
||
#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
|
||
#> ℹ For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
|
||
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
|
||
#> IPM MEM GEN TOB AMK KAN
|
||
#> <sir> <sir> <sir> <sir> <sir> <sir>
|
||
#> 1: <NA> <NA> <NA> <NA> <NA> <NA>
|
||
#> 2: <NA> <NA> <NA> <NA> <NA> <NA>
|
||
#> 3: <NA> <NA> <NA> <NA> <NA> <NA>
|
||
#> 4: <NA> <NA> <NA> <NA> <NA> <NA>
|
||
#> 5: <NA> <NA> <NA> <NA> <NA> <NA>
|
||
#> ---
|
||
#> 1996: <NA> <NA> R R R R
|
||
#> 1997: S S S S S <NA>
|
||
#> 1998: S S S <NA> <NA> <NA>
|
||
#> 1999: S S S S <NA> <NA>
|
||
#> 2000: S S S S <NA> <NA>
|
||
|
||
# row filters are also supported:
|
||
if (require("data.table")) {
|
||
dt[any(carbapenems() == "S"), ]
|
||
}
|
||
#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
|
||
#> date patient age gender ward mo PEN OXA FLC
|
||
#> <Date> <char> <num> <char> <char> <mo> <sir> <sir> <sir>
|
||
#> 1: 2002-01-19 738003 71 M Clinical B_ESCHR_COLI R <NA> <NA>
|
||
#> 2: 2002-01-19 738003 71 M Clinical B_ESCHR_COLI R <NA> <NA>
|
||
#> 3: 2002-01-22 F35553 50 M ICU B_PROTS_MRBL R <NA> <NA>
|
||
#> 4: 2002-01-22 F35553 50 M ICU B_PROTS_MRBL R <NA> <NA>
|
||
#> 5: 2002-02-05 067927 45 F ICU B_SERRT_MRCS R <NA> <NA>
|
||
#> ---
|
||
#> 905: 2005-04-12 D71461 70 M ICU B_ESCHR_COLI R <NA> <NA>
|
||
#> 906: 2009-11-12 650870 69 F Outpatient B_ESCHR_COLI R <NA> <NA>
|
||
#> 907: 2012-06-14 8CBCF2 41 F Clinical B_STPHY_CONS R S S
|
||
#> 908: 2012-10-11 175532 78 M Clinical B_ESCHR_COLI R <NA> <NA>
|
||
#> 909: 2013-11-23 A97263 77 M Clinical B_KLBSL_PNMN R <NA> <NA>
|
||
#> AMX AMC AMP TZP CZO FEP CXM FOX CTX CAZ CRO GEN
|
||
#> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir>
|
||
#> 1: <NA> I <NA> <NA> <NA> <NA> S <NA> S <NA> S <NA>
|
||
#> 2: <NA> I <NA> <NA> <NA> <NA> S <NA> S <NA> S <NA>
|
||
#> 3: <NA> I <NA> <NA> <NA> <NA> S <NA> S S S <NA>
|
||
#> 4: <NA> I <NA> <NA> <NA> <NA> S <NA> S S S <NA>
|
||
#> 5: R R R <NA> R <NA> R R <NA> <NA> <NA> <NA>
|
||
#> ---
|
||
#> 905: S S S S <NA> S S S S S S S
|
||
#> 906: S S S S S S S S S S S S
|
||
#> 907: <NA> S <NA> <NA> S S S S S R S S
|
||
#> 908: R S R S <NA> S R R S S S S
|
||
#> 909: R S R S <NA> S S S S S S S
|
||
#> TOB AMK KAN TMP SXT NIT FOS LNZ CIP MFX VAN TEC
|
||
#> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir>
|
||
#> 1: S <NA> <NA> S S <NA> <NA> R <NA> <NA> R R
|
||
#> 2: S <NA> <NA> S S <NA> <NA> R <NA> <NA> R R
|
||
#> 3: <NA> <NA> <NA> S S R <NA> R S <NA> R R
|
||
#> 4: <NA> <NA> <NA> S S R <NA> R S <NA> R R
|
||
#> 5: <NA> <NA> <NA> S S R <NA> R S <NA> R R
|
||
#> ---
|
||
#> 905: S S <NA> <NA> S S <NA> R S <NA> R R
|
||
#> 906: S S <NA> S S S <NA> R S <NA> R R
|
||
#> 907: <NA> <NA> <NA> S S <NA> <NA> <NA> S <NA> S <NA>
|
||
#> 908: S <NA> <NA> R R R <NA> R R R R R
|
||
#> 909: S <NA> <NA> S S S <NA> R S <NA> R R
|
||
#> TCY TGC DOX ERY CLI AZM IPM MEM MTR CHL COL MUP
|
||
#> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir> <sir>
|
||
#> 1: <NA> <NA> <NA> R R R S <NA> <NA> <NA> <NA> <NA>
|
||
#> 2: <NA> <NA> <NA> R R R S <NA> <NA> <NA> <NA> <NA>
|
||
#> 3: R R R R R R S <NA> <NA> <NA> R <NA>
|
||
#> 4: R R R R R R S <NA> <NA> <NA> R <NA>
|
||
#> 5: R R R R R R S <NA> <NA> <NA> R <NA>
|
||
#> ---
|
||
#> 905: <NA> <NA> <NA> R R R S S <NA> <NA> <NA> <NA>
|
||
#> 906: <NA> <NA> <NA> R R R S S <NA> <NA> <NA> <NA>
|
||
#> 907: <NA> <NA> <NA> S S S S S <NA> <NA> R <NA>
|
||
#> 908: <NA> <NA> <NA> R R R S S <NA> <NA> S <NA>
|
||
#> 909: <NA> <NA> <NA> R R R S S <NA> <NA> S <NA>
|
||
#> RIF
|
||
#> <sir>
|
||
#> 1: R
|
||
#> 2: R
|
||
#> 3: R
|
||
#> 4: R
|
||
#> 5: R
|
||
#> ---
|
||
#> 905: R
|
||
#> 906: R
|
||
#> 907: <NA>
|
||
#> 908: R
|
||
#> 909: R
|
||
if (require("data.table")) {
|
||
dt[any(carbapenems() == "S"), penicillins(), with = FALSE]
|
||
}
|
||
#> ℹ For `carbapenems()` using columns 'IPM' (imipenem) and 'MEM' (meropenem)
|
||
#> ℹ For `penicillins()` using columns 'PEN' (benzylpenicillin), 'OXA'
|
||
#> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC'
|
||
#> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), and 'TZP'
|
||
#> (piperacillin/tazobactam)
|
||
#> PEN OXA FLC AMX AMC AMP TZP
|
||
#> <sir> <sir> <sir> <sir> <sir> <sir> <sir>
|
||
#> 1: R <NA> <NA> <NA> I <NA> <NA>
|
||
#> 2: R <NA> <NA> <NA> I <NA> <NA>
|
||
#> 3: R <NA> <NA> <NA> I <NA> <NA>
|
||
#> 4: R <NA> <NA> <NA> I <NA> <NA>
|
||
#> 5: R <NA> <NA> R R R <NA>
|
||
#> ---
|
||
#> 905: R <NA> <NA> S S S S
|
||
#> 906: R <NA> <NA> S S S S
|
||
#> 907: R S S <NA> S <NA> <NA>
|
||
#> 908: R <NA> <NA> R S R S
|
||
#> 909: R <NA> <NA> R S R S
|
||
# }
|
||
```
|