1
0
mirror of https://github.com/msberends/AMR.git synced 2025-12-15 23:10:28 +01:00
Files
AMR/reference/key_antimicrobials.md
2025-11-24 10:42:21 +00:00

224 lines
6.1 KiB
Markdown

# (Key) Antimicrobials for First Weighted Isolates
These functions can be used to determine first weighted isolates by
considering the phenotype for isolate selection (see
[`first_isolate()`](https://amr-for-r.org/reference/first_isolate.md)).
Using a phenotype-based method to determine first isolates is more
reliable than methods that disregard phenotypes.
## Usage
``` r
key_antimicrobials(x = NULL, col_mo = NULL, universal = c("ampicillin",
"amoxicillin/clavulanic acid", "cefuroxime", "piperacillin/tazobactam",
"ciprofloxacin", "trimethoprim/sulfamethoxazole"),
gram_negative = c("gentamicin", "tobramycin", "colistin", "cefotaxime",
"ceftazidime", "meropenem"), gram_positive = c("vancomycin", "teicoplanin",
"tetracycline", "erythromycin", "oxacillin", "rifampin"),
antifungal = c("anidulafungin", "caspofungin", "fluconazole", "miconazole",
"nystatin", "voriconazole"), only_sir_columns = any(is.sir(x)), ...)
all_antimicrobials(x = NULL, only_sir_columns = any(is.sir(x)), ...)
antimicrobials_equal(y, z, type = c("points", "keyantimicrobials"),
ignore_I = TRUE, points_threshold = 2, ...)
```
## Arguments
- x:
A [data.frame](https://rdrr.io/r/base/data.frame.html) with
antimicrobials columns, like `AMX` or `amox`. Can be left blank to
determine automatically.
- col_mo:
Column name of the names or codes of the microorganisms (see
[`as.mo()`](https://amr-for-r.org/reference/as.mo.md)) - the default
is the first column of class
[`mo`](https://amr-for-r.org/reference/as.mo.md). Values will be
coerced using [`as.mo()`](https://amr-for-r.org/reference/as.mo.md).
- universal:
Names of **broad-spectrum** antimicrobial drugs, case-insensitive. Set
to `NULL` to ignore. See *Details* for the default antimicrobial
drugs.
- gram_negative:
Names of antibiotic drugs for **Gram-positives**, case-insensitive.
Set to `NULL` to ignore. See *Details* for the default antibiotic
drugs.
- gram_positive:
Names of antibiotic drugs for **Gram-negatives**, case-insensitive.
Set to `NULL` to ignore. See *Details* for the default antibiotic
drugs.
- antifungal:
Names of antifungal drugs for **fungi**, case-insensitive. Set to
`NULL` to ignore. See *Details* for the default antifungal drugs.
- only_sir_columns:
A [logical](https://rdrr.io/r/base/logical.html) to indicate whether
only antimicrobial columns must be included that were transformed to
class [sir](https://amr-for-r.org/reference/as.sir.md) on beforehand.
Defaults to `FALSE` if no columns of `x` have a class
[sir](https://amr-for-r.org/reference/as.sir.md).
- ...:
Ignored, only in place to allow future extensions.
- y, z:
[character](https://rdrr.io/r/base/character.html) vectors to compare.
- type:
Type to determine weighed isolates; can be `"keyantimicrobials"` or
`"points"`, see *Details*.
- ignore_I:
[logical](https://rdrr.io/r/base/logical.html) to indicate whether
antibiotic interpretations with `"I"` will be ignored when
`type = "keyantimicrobials"`, see *Details*.
- points_threshold:
Minimum number of points to require before differences in the
antibiogram will lead to inclusion of an isolate when
`type = "points"`, see *Details*.
## Details
The `key_antimicrobials()` and `all_antimicrobials()` functions are
context-aware. This means that the `x` argument can be left blank if
used inside a [data.frame](https://rdrr.io/r/base/data.frame.html) call,
see *Examples*.
The function `key_antimicrobials()` returns a
[character](https://rdrr.io/r/base/character.html) vector with 12
antimicrobial results for every isolate. The function
`all_antimicrobials()` returns a
[character](https://rdrr.io/r/base/character.html) vector with all
antimicrobial drug results for every isolate. These vectors can then be
compared using `antimicrobials_equal()`, to check if two isolates have
generally the same antibiogram. Missing and invalid values are replaced
with a dot (`"."`) by `key_antimicrobials()` and ignored by
`antimicrobials_equal()`.
Please see the
[`first_isolate()`](https://amr-for-r.org/reference/first_isolate.md)
function how these important functions enable the 'phenotype-based'
method for determination of first isolates.
The default antimicrobial drugs used for **all rows** (set in
`universal`) are:
- Ampicillin
- Amoxicillin/clavulanic acid
- Cefuroxime
- Ciprofloxacin
- Piperacillin/tazobactam
- Trimethoprim/sulfamethoxazole
The default antimicrobial drugs used for **Gram-negative bacteria** (set
in `gram_negative`) are:
- Cefotaxime
- Ceftazidime
- Colistin
- Gentamicin
- Meropenem
- Tobramycin
The default antimicrobial drugs used for **Gram-positive bacteria** (set
in `gram_positive`) are:
- Erythromycin
- Oxacillin
- Rifampin
- Teicoplanin
- Tetracycline
- Vancomycin
The default antimicrobial drugs used for **fungi** (set in `antifungal`)
are:
- Anidulafungin
- Caspofungin
- Fluconazole
- Miconazole
- Nystatin
- Voriconazole
## See also
[`first_isolate()`](https://amr-for-r.org/reference/first_isolate.md)
## Examples
``` r
# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates.
# output of the `key_antimicrobials()` function could be like this:
strainA <- "SSSRR.S.R..S"
strainB <- "SSSIRSSSRSSS"
# those strings can be compared with:
antimicrobials_equal(strainA, strainB, type = "keyantimicrobials")
#> [1] TRUE
# TRUE, because I is ignored (as well as missing values)
antimicrobials_equal(strainA, strainB, type = "keyantimicrobials", ignore_I = FALSE)
#> [1] FALSE
# FALSE, because I is not ignored and so the 4th [character] differs
# \donttest{
if (require("dplyr")) {
# set key antimicrobials to a new variable
my_patients <- example_isolates %>%
mutate(keyab = key_antimicrobials(antifungal = NULL)) %>% # no need to define `x`
mutate(
# now calculate first isolates
first_regular = first_isolate(col_keyantimicrobials = FALSE),
# and first WEIGHTED isolates
first_weighted = first_isolate(col_keyantimicrobials = "keyab")
)
# Check the difference in this data set, 'weighted' results in more isolates:
sum(my_patients$first_regular, na.rm = TRUE)
sum(my_patients$first_weighted, na.rm = TRUE)
}
#> [1] 1383
# }
```