1
0
mirror of https://github.com/msberends/AMR.git synced 2025-12-25 10:30:18 +01:00
Files
AMR/reference/get_episode.md
2025-12-22 08:48:41 +00:00

337 lines
13 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Determine Clinical or Epidemic Episodes
These functions determine which items in a vector can be considered (the
start of) a new episode. This can be used to determine clinical episodes
for any epidemiological analysis. The `get_episode()` function returns
the index number of the episode per group, while the `is_new_episode()`
function returns `TRUE` for every new `get_episode()` index. Both
absolute and relative episode determination are supported.
## Usage
``` r
get_episode(x, episode_days = NULL, case_free_days = NULL, ...)
is_new_episode(x, episode_days = NULL, case_free_days = NULL, ...)
```
## Arguments
- x:
Vector of dates (class `Date` or `POSIXt`), will be sorted internally
to determine episodes.
- episode_days:
Episode length in days to specify the time period after which a new
episode begins, can also be less than a day or `Inf`, see *Details*.
- case_free_days:
(inter-epidemic) interval length in days after which a new episode
will start, can also be less than a day or `Inf`, see *Details*.
- ...:
Ignored, only in place to allow future extensions.
## Value
- `get_episode()`: an [integer](https://rdrr.io/r/base/integer.html)
vector
- `is_new_episode()`: a [logical](https://rdrr.io/r/base/logical.html)
vector
## Details
Episodes can be determined in two ways: absolute and relative.
1. Absolute
This method uses `episode_days` to define an episode length in days,
after which a new episode will start. A common use case in AMR data
analysis is microbial epidemiology: episodes of *S. aureus*
bacteraemia in ICU patients for example. The episode length could
then be 30 days, so that new *S. aureus* isolates after an ICU
episode of 30 days will be considered a different (or new) episode.
Thus, this method counts **since the start of the previous
episode**.
2. Relative
This method uses `case_free_days` to quantify the duration of
case-free days (the inter-epidemic interval), after which a new
episode will start. A common use case is infectious disease
epidemiology: episodes of norovirus outbreaks in a hospital for
example. The case-free period could then be 14 days, so that new
norovirus cases after that time will be considered a different (or
new) episode.
Thus, this methods counts **since the last case in the previous
episode**.
In a table:
| | | |
|------------|--------------------------|----------------------------|
| Date | Using `episode_days = 7` | Using `case_free_days = 7` |
| 2023-01-01 | 1 | 1 |
| 2023-01-02 | 1 | 1 |
| 2023-01-05 | 1 | 1 |
| 2023-01-08 | 2\*\* | 1 |
| 2023-02-21 | 3 | 2\*\*\* |
| 2023-02-22 | 3 | 2 |
| 2023-02-23 | 3 | 2 |
| 2023-02-24 | 3 | 2 |
| 2023-03-01 | 4 | 2 |
\*\* This marks the start of a new episode, because 8 January 2023 is
more than 7 days since the start of the previous episode (1 January
2023).
\*\*\* This marks the start of a new episode, because 21 January 2023 is
more than 7 days since the last case in the previous episode (8 January
2023).
Either `episode_days` or `case_free_days` must be provided in the
function.
### Difference between `get_episode()` and `is_new_episode()`
The `get_episode()` function returns the index number of the episode, so
all cases/patients/isolates in the first episode will have the number 1,
all cases/patients/isolates in the second episode will have the number
2, etc.
The `is_new_episode()` function on the other hand, returns `TRUE` for
every new `get_episode()` index.
To specify, when setting `episode_days = 365` (using method 1 as
explained above), this is how the two functions differ:
| | | | |
|---------|------------|-----------------|--------------------|
| patient | date | `get_episode()` | `is_new_episode()` |
| A | 2019-01-01 | 1 | TRUE |
| A | 2019-03-01 | 1 | FALSE |
| A | 2021-01-01 | 2 | TRUE |
| B | 2008-01-01 | 1 | TRUE |
| B | 2008-01-01 | 1 | FALSE |
| C | 2020-01-01 | 1 | TRUE |
### Other
The
[`first_isolate()`](https://amr-for-r.org/reference/first_isolate.md)
function is a wrapper around the `is_new_episode()` function, but is
more efficient for data sets containing microorganism codes or names and
allows for different isolate selection methods.
The `dplyr` package is not required for these functions to work, but
these episode functions do support [variable
grouping](https://dplyr.tidyverse.org/reference/group_by.html) and work
conveniently inside `dplyr` verbs such as
[`filter()`](https://dplyr.tidyverse.org/reference/filter.html),
[`mutate()`](https://dplyr.tidyverse.org/reference/mutate.html) and
[`summarise()`](https://dplyr.tidyverse.org/reference/summarise.html).
## See also
[`first_isolate()`](https://amr-for-r.org/reference/first_isolate.md)
## Examples
``` r
# difference between absolute and relative determination of episodes:
x <- data.frame(dates = as.Date(c(
"2021-01-01",
"2021-01-02",
"2021-01-05",
"2021-01-08",
"2021-02-21",
"2021-02-22",
"2021-02-23",
"2021-02-24",
"2021-03-01",
"2021-03-01"
)))
x$absolute <- get_episode(x$dates, episode_days = 7)
x$relative <- get_episode(x$dates, case_free_days = 7)
x
#> dates absolute relative
#> 1 2021-01-01 1 1
#> 2 2021-01-02 1 1
#> 3 2021-01-05 1 1
#> 4 2021-01-08 2 1
#> 5 2021-02-21 3 2
#> 6 2021-02-22 3 2
#> 7 2021-02-23 3 2
#> 8 2021-02-24 3 2
#> 9 2021-03-01 4 2
#> 10 2021-03-01 4 2
# `example_isolates` is a data set available in the AMR package.
# See ?example_isolates
df <- example_isolates[sample(seq_len(2000), size = 100), ]
get_episode(df$date, episode_days = 60) # indices
#> [1] 43 9 7 14 28 40 49 29 19 27 10 44 18 22 42 12 8 36 13 3 46 5 4 35 38
#> [26] 16 22 23 16 10 42 13 2 45 18 19 39 32 22 36 40 45 39 40 11 23 25 39 26 23
#> [51] 25 12 17 23 30 30 34 16 21 37 40 26 11 7 4 16 43 22 47 37 39 31 25 41 1
#> [76] 45 39 23 32 45 20 22 15 14 13 43 9 38 29 6 48 24 21 23 44 19 31 1 3 33
is_new_episode(df$date, episode_days = 60) # TRUE/FALSE
#> [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [25] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
#> [37] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
#> [49] TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE
#> [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE
#> [73] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
#> [85] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
#> [97] FALSE FALSE FALSE TRUE
# filter on results from the third 60-day episode only, using base R
df[which(get_episode(df$date, 60) == 3), ]
#> # A tibble: 2 × 46
#> date patient age gender ward mo PEN OXA FLC AMX
#> <date> <chr> <dbl> <chr> <chr> <mo> <sir> <sir> <sir> <sir>
#> 1 2002-11-04 304347 62 M Clinical B_STRPT_PNMN S NA NA S
#> 2 2002-10-18 E55128 57 F ICU B_STPHY_AURS R NA S R
#> # 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>, FEP <sir>,
#> # CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>, GEN <sir>,
#> # TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>, NIT <sir>,
#> # FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>, TEC <sir>,
#> # TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>, AZM <sir>,
#> # IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>, MUP <sir>, RIF <sir>
# the functions also work for less than a day, e.g. to include one per hour:
get_episode(
c(
Sys.time(),
Sys.time() + 60 * 60
),
episode_days = 1 / 24
)
#> [1] 1 2
# \donttest{
if (require("dplyr")) {
# is_new_episode() can also be used in dplyr verbs to determine patient
# episodes based on any (combination of) grouping variables:
df %>%
mutate(condition = sample(
x = c("A", "B", "C"),
size = 100,
replace = TRUE
)) %>%
group_by(patient, condition) %>%
mutate(new_episode = is_new_episode(date, 365)) %>%
select(patient, date, condition, new_episode) %>%
arrange(patient, condition, date)
}
#> # A tibble: 100 × 4
#> # Groups: patient, condition [96]
#> patient date condition new_episode
#> <chr> <date> <chr> <lgl>
#> 1 022060 2004-05-04 A TRUE
#> 2 060287 2007-03-11 A TRUE
#> 3 0E2483 2007-04-06 C TRUE
#> 4 101305 2006-12-13 A TRUE
#> 5 141061 2014-10-22 A TRUE
#> 6 146F70 2009-08-14 A TRUE
#> 7 15D386 2004-08-01 B TRUE
#> 8 187841 2008-04-22 C TRUE
#> 9 195736 2008-08-29 C TRUE
#> 10 195736 2008-08-29 C FALSE
#> # 90 more rows
if (require("dplyr")) {
df %>%
group_by(ward, patient) %>%
transmute(date,
patient,
new_index = get_episode(date, 60),
new_logical = is_new_episode(date, 60)
) %>%
arrange(patient, ward, date)
}
#> # A tibble: 100 × 5
#> # Groups: ward, patient [91]
#> ward date patient new_index new_logical
#> <chr> <date> <chr> <int> <lgl>
#> 1 ICU 2004-05-04 022060 1 TRUE
#> 2 Clinical 2007-03-11 060287 1 TRUE
#> 3 Clinical 2007-04-06 0E2483 1 TRUE
#> 4 Clinical 2006-12-13 101305 1 TRUE
#> 5 Clinical 2014-10-22 141061 1 TRUE
#> 6 Clinical 2009-08-14 146F70 1 TRUE
#> 7 ICU 2004-08-01 15D386 1 TRUE
#> 8 Clinical 2008-04-22 187841 1 TRUE
#> 9 Clinical 2008-08-29 195736 1 TRUE
#> 10 Clinical 2008-08-29 195736 1 FALSE
#> # 90 more rows
if (require("dplyr")) {
df %>%
group_by(ward) %>%
summarise(
n_patients = n_distinct(patient),
n_episodes_365 = sum(is_new_episode(date, episode_days = 365)),
n_episodes_60 = sum(is_new_episode(date, episode_days = 60)),
n_episodes_30 = sum(is_new_episode(date, episode_days = 30))
)
}
#> # A tibble: 3 × 5
#> ward n_patients n_episodes_365 n_episodes_60 n_episodes_30
#> <chr> <int> <int> <int> <int>
#> 1 Clinical 58 14 38 44
#> 2 ICU 26 7 20 23
#> 3 Outpatient 7 4 6 7
# grouping on patients and microorganisms leads to the same
# results as first_isolate() when using 'episode-based':
if (require("dplyr")) {
x <- df %>%
filter_first_isolate(
include_unknown = TRUE,
method = "episode-based"
)
y <- df %>%
group_by(patient, mo) %>%
filter(is_new_episode(date, 365)) %>%
ungroup()
identical(x, y)
}
#> [1] FALSE
# but is_new_episode() has a lot more flexibility than first_isolate(),
# since you can now group on anything that seems relevant:
if (require("dplyr")) {
df %>%
group_by(patient, mo, ward) %>%
mutate(flag_episode = is_new_episode(date, 365)) %>%
select(group_vars(.), flag_episode)
}
#> # A tibble: 100 × 4
#> # Groups: patient, mo, ward [96]
#> patient mo ward flag_episode
#> <chr> <mo> <chr> <lgl>
#> 1 917895 B_STPHY_CPTS ICU TRUE
#> 2 022060 B_ENTRBC_CLOC ICU TRUE
#> 3 C36883 B_ESCHR_COLI Clinical TRUE
#> 4 5DF436 B_STPHY_AURS ICU TRUE
#> 5 971739 B_STPHY_CONS Clinical TRUE
#> 6 488175 B_ESCHR_COLI Clinical TRUE
#> 7 5DB1C8 B_STPHY_CPTS Clinical TRUE
#> 8 BC9909 B_ENTRBC_CLOC Clinical TRUE
#> 9 5B78D5 B_STPHY_AURS Clinical TRUE
#> 10 284FFF B_STPHY_EPDR Clinical TRUE
#> # 90 more rows
# }
```