1
0
mirror of https://github.com/msberends/AMR.git synced 2025-12-17 15:40:19 +01:00
Files
AMR/articles/AMR_with_tidymodels.md
2025-11-24 10:42:21 +00:00

607 lines
22 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# AMR with tidymodels
> This page was entirely written by our [AMR for R
> Assistant](https://chat.amr-for-r.org), a ChatGPT manually-trained
> model able to answer any question about the `AMR` package.
Antimicrobial resistance (AMR) is a global health crisis, and
understanding resistance patterns is crucial for managing effective
treatments. The `AMR` R package provides robust tools for analysing AMR
data, including convenient antimicrobial selector functions like
[`aminoglycosides()`](https://amr-for-r.org/reference/antimicrobial_selectors.md)
and
[`betalactams()`](https://amr-for-r.org/reference/antimicrobial_selectors.md).
In this post, we will explore how to use the `tidymodels` framework to
predict resistance patterns in the `example_isolates` dataset in two
examples.
This post contains the following examples:
1. Using Antimicrobial Selectors
2. Predicting ESBL Presence Using Raw MICs
3. Predicting AMR Over Time
## Example 1: Using Antimicrobial Selectors
By leveraging the power of `tidymodels` and the `AMR` package, well
build a reproducible machine learning workflow to predict the Gramstain
of the microorganism to two important antibiotic classes:
aminoglycosides and beta-lactams.
### **Objective**
Our goal is to build a predictive model using the `tidymodels` framework
to determine the Gramstain of the microorganism based on microbial data.
We will:
1. Preprocess data using the selector functions
[`aminoglycosides()`](https://amr-for-r.org/reference/antimicrobial_selectors.md)
and
[`betalactams()`](https://amr-for-r.org/reference/antimicrobial_selectors.md).
2. Define a logistic regression model for prediction.
3. Use a structured `tidymodels` workflow to preprocess, train, and
evaluate the model.
### **Data Preparation**
We begin by loading the required libraries and preparing the
`example_isolates` dataset from the `AMR` package.
``` r
# Load required libraries
library(AMR) # For AMR data analysis
library(tidymodels) # For machine learning workflows, and data manipulation (dplyr, tidyr, ...)
```
Prepare the data:
``` r
# Your data could look like this:
example_isolates
#> # A tibble: 2,000 × 46
#> date patient age gender ward mo PEN OXA FLC AMX
#> <date> <chr> <dbl> <chr> <chr> <mo> <sir> <sir> <sir> <sir>
#> 1 2002-01-02 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
#> 2 2002-01-03 A77334 65 F Clinical B_ESCHR_COLI R NA NA NA
#> 3 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
#> 4 2002-01-07 067927 45 F ICU B_STPHY_EPDR R NA R NA
#> 5 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
#> 6 2002-01-13 067927 45 F ICU B_STPHY_EPDR R NA R NA
#> 7 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
#> 8 2002-01-14 462729 78 M Clinical B_STPHY_AURS R NA S R
#> 9 2002-01-16 067927 45 F ICU B_STPHY_EPDR R NA R NA
#> 10 2002-01-17 858515 79 F ICU B_STPHY_EPDR R NA S NA
#> # 1,990 more rows
#> # 36 more variables: AMC <sir>, AMP <sir>, TZP <sir>, CZO <sir>, FEP <sir>,
#> # CXM <sir>, FOX <sir>, CTX <sir>, CAZ <sir>, CRO <sir>, GEN <sir>,
#> # TOB <sir>, AMK <sir>, KAN <sir>, TMP <sir>, SXT <sir>, NIT <sir>,
#> # FOS <sir>, LNZ <sir>, CIP <sir>, MFX <sir>, VAN <sir>, TEC <sir>,
#> # TCY <sir>, TGC <sir>, DOX <sir>, ERY <sir>, CLI <sir>, AZM <sir>,
#> # IPM <sir>, MEM <sir>, MTR <sir>, CHL <sir>, COL <sir>, MUP <sir>, …
# Select relevant columns for prediction
data <- example_isolates %>%
# select AB results dynamically
select(mo, aminoglycosides(), betalactams()) %>%
# replace NAs with NI (not-interpretable)
mutate(across(where(is.sir),
~replace_na(.x, "NI")),
# make factors of SIR columns
across(where(is.sir),
as.integer),
# get Gramstain of microorganisms
mo = as.factor(mo_gramstain(mo))) %>%
# drop NAs - the ones without a Gramstain (fungi, etc.)
drop_na()
#> For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
#> For `betalactams()` using columns 'PEN' (benzylpenicillin), 'OXA'
#> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC'
#> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), 'TZP'
#> (piperacillin/tazobactam), 'CZO' (cefazolin), 'FEP' (cefepime), 'CXM'
#> (cefuroxime), 'FOX' (cefoxitin), 'CTX' (cefotaxime), 'CAZ' (ceftazidime),
#> 'CRO' (ceftriaxone), 'IPM' (imipenem), and 'MEM' (meropenem)
```
**Explanation:**
- [`aminoglycosides()`](https://amr-for-r.org/reference/antimicrobial_selectors.md)
and
[`betalactams()`](https://amr-for-r.org/reference/antimicrobial_selectors.md)
dynamically select columns for antimicrobials in these classes.
- `drop_na()` ensures the model receives complete cases for training.
### **Defining the Workflow**
We now define the `tidymodels` workflow, which consists of three steps:
preprocessing, model specification, and fitting.
#### 1. Preprocessing with a Recipe
We create a recipe to preprocess the data for modelling.
``` r
# Define the recipe for data preprocessing
resistance_recipe <- recipe(mo ~ ., data = data) %>%
step_corr(c(aminoglycosides(), betalactams()), threshold = 0.9)
resistance_recipe
#>
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#>
#> ── Inputs
#> Number of variables by role
#> outcome: 1
#> predictor: 20
#>
#> ── Operations
#> • Correlation filter on: c(aminoglycosides(), betalactams())
```
For a recipe that includes at least one preprocessing operation, like we
have with `step_corr()`, the necessary parameters can be estimated from
a training set using `prep()`:
``` r
prep(resistance_recipe)
#> For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
#> For `betalactams()` using columns 'PEN' (benzylpenicillin), 'OXA'
#> (oxacillin), 'FLC' (flucloxacillin), 'AMX' (amoxicillin), 'AMC'
#> (amoxicillin/clavulanic acid), 'AMP' (ampicillin), 'TZP'
#> (piperacillin/tazobactam), 'CZO' (cefazolin), 'FEP' (cefepime), 'CXM'
#> (cefuroxime), 'FOX' (cefoxitin), 'CTX' (cefotaxime), 'CAZ' (ceftazidime),
#> 'CRO' (ceftriaxone), 'IPM' (imipenem), and 'MEM' (meropenem)
#>
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#>
#> ── Inputs
#> Number of variables by role
#> outcome: 1
#> predictor: 20
#>
#> ── Training information
#> Training data contained 1968 data points and no incomplete rows.
#>
#> ── Operations
#> • Correlation filter on: AMX CTX | Trained
```
**Explanation:**
- `recipe(mo ~ ., data = data)` will take the `mo` column as outcome and
all other columns as predictors.
- `step_corr()` removes predictors (i.e., antibiotic columns) that have
a higher correlation than 90%.
Notice how the recipe contains just the antimicrobial selector
functions - no need to define the columns specifically. In the
preparation (retrieved with `prep()`) we can see that the columns or
variables AMX and CTX were removed as they correlate too much with
existing, other variables.
#### 2. Specifying the Model
We define a logistic regression model since resistance prediction is a
binary classification task.
``` r
# Specify a logistic regression model
logistic_model <- logistic_reg() %>%
set_engine("glm") # Use the Generalised Linear Model engine
logistic_model
#> Logistic Regression Model Specification (classification)
#>
#> Computational engine: glm
```
**Explanation:**
- `logistic_reg()` sets up a logistic regression model.
- `set_engine("glm")` specifies the use of Rs built-in GLM engine.
#### 3. Building the Workflow
We bundle the recipe and model together into a `workflow`, which
organises the entire modelling process.
``` r
# Combine the recipe and model into a workflow
resistance_workflow <- workflow() %>%
add_recipe(resistance_recipe) %>% # Add the preprocessing recipe
add_model(logistic_model) # Add the logistic regression model
resistance_workflow
#> ══ Workflow ════════════════════════════════════════════════════════════════════
#> Preprocessor: Recipe
#> Model: logistic_reg()
#>
#> ── Preprocessor ────────────────────────────────────────────────────────────────
#> 1 Recipe Step
#>
#> • step_corr()
#>
#> ── Model ───────────────────────────────────────────────────────────────────────
#> Logistic Regression Model Specification (classification)
#>
#> Computational engine: glm
```
### **Training and Evaluating the Model**
To train the model, we split the data into training and testing sets.
Then, we fit the workflow on the training set and evaluate its
performance.
``` r
# Split data into training and testing sets
set.seed(123) # For reproducibility
data_split <- initial_split(data, prop = 0.8) # 80% training, 20% testing
training_data <- training(data_split) # Training set
testing_data <- testing(data_split) # Testing set
# Fit the workflow to the training data
fitted_workflow <- resistance_workflow %>%
fit(training_data) # Train the model
```
**Explanation:**
- `initial_split()` splits the data into training and testing sets.
- `fit()` trains the workflow on the training set.
Notice how in `fit()`, the antimicrobial selector functions are
internally called again. For training, these functions are called since
they are stored in the recipe.
Next, we evaluate the model on the testing data.
``` r
# Make predictions on the testing set
predictions <- fitted_workflow %>%
predict(testing_data) # Generate predictions
probabilities <- fitted_workflow %>%
predict(testing_data, type = "prob") # Generate probabilities
predictions <- predictions %>%
bind_cols(probabilities) %>%
bind_cols(testing_data) # Combine with true labels
predictions
#> # A tibble: 394 × 24
#> .pred_class `.pred_Gram-negative` `.pred_Gram-positive` mo GEN TOB
#> <fct> <dbl> <dbl> <fct> <int> <int>
#> 1 Gram-positive 1.07e- 1 8.93 e- 1 Gram-p… 5 5
#> 2 Gram-positive 3.17e- 8 1.000e+ 0 Gram-p… 5 1
#> 3 Gram-negative 9.99e- 1 1.42 e- 3 Gram-n… 5 5
#> 4 Gram-positive 2.22e-16 1 e+ 0 Gram-p… 5 5
#> 5 Gram-negative 9.46e- 1 5.42 e- 2 Gram-n… 5 5
#> 6 Gram-positive 1.07e- 1 8.93 e- 1 Gram-p… 5 5
#> 7 Gram-positive 2.22e-16 1 e+ 0 Gram-p… 1 5
#> 8 Gram-positive 2.22e-16 1 e+ 0 Gram-p… 4 4
#> 9 Gram-negative 1 e+ 0 2.22 e-16 Gram-n… 1 1
#> 10 Gram-positive 6.05e-11 1.000e+ 0 Gram-p… 4 4
#> # 384 more rows
#> # 18 more variables: AMK <int>, KAN <int>, PEN <int>, OXA <int>, FLC <int>,
#> # AMX <int>, AMC <int>, AMP <int>, TZP <int>, CZO <int>, FEP <int>,
#> # CXM <int>, FOX <int>, CTX <int>, CAZ <int>, CRO <int>, IPM <int>, MEM <int>
# Evaluate model performance
metrics <- predictions %>%
metrics(truth = mo, estimate = .pred_class) # Calculate performance metrics
metrics
#> # A tibble: 2 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.995
#> 2 kap binary 0.989
# To assess some other model properties, you can make our own `metrics()` function
our_metrics <- metric_set(accuracy, kap, ppv, npv) # add Positive Predictive Value and Negative Predictive Value
metrics2 <- predictions %>%
our_metrics(truth = mo, estimate = .pred_class) # run again on our `our_metrics()` function
metrics2
#> # A tibble: 4 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.995
#> 2 kap binary 0.989
#> 3 ppv binary 0.987
#> 4 npv binary 1
```
**Explanation:**
- [`predict()`](https://rdrr.io/r/stats/predict.html) generates
predictions on the testing set.
- `metrics()` computes evaluation metrics like accuracy and kappa.
It appears we can predict the Gram stain with a 99.5% accuracy based on
AMR results of only aminoglycosides and beta-lactam antibiotics. The ROC
curve looks like this:
``` r
predictions %>%
roc_curve(mo, `.pred_Gram-negative`) %>%
autoplot()
```
![](AMR_with_tidymodels_files/figure-html/unnamed-chunk-8-1.png)
### **Conclusion**
In this post, we demonstrated how to build a machine learning pipeline
with the `tidymodels` framework and the `AMR` package. By combining
selector functions like
[`aminoglycosides()`](https://amr-for-r.org/reference/antimicrobial_selectors.md)
and
[`betalactams()`](https://amr-for-r.org/reference/antimicrobial_selectors.md)
with `tidymodels`, we efficiently prepared data, trained a model, and
evaluated its performance.
This workflow is extensible to other antimicrobial classes and
resistance patterns, empowering users to analyse AMR data systematically
and reproducibly.
------------------------------------------------------------------------
## Example 2: Predicting ESBL Presence Using Raw MICs
In this second example, we demonstrate how to use `<mic>` columns
directly in `tidymodels` workflows using AMR-specific recipe steps. This
includes a transformation to `log2` scale using `step_mic_log2()`, which
prepares MIC values for use in classification models.
This approach and idea formed the basis for the publication [DOI:
10.3389/fmicb.2025.1582703](https://doi.org/10.3389/fmicb.2025.1582703)
to model the presence of extended-spectrum beta-lactamases (ESBL).
> NOTE: THIS EXAMPLE WILL BE AVAILABLE IN A NEXT VERSION (#TODO)
>
> The new AMR package version will contain new tidymodels selectors such
> as `step_mic_log2()`.
------------------------------------------------------------------------
## Example 2: Predicting AMR Over Time
In this third example, we aim to predict antimicrobial resistance (AMR)
trends over time using `tidymodels`. We will model resistance to three
antibiotics (amoxicillin `AMX`, amoxicillin-clavulanic acid `AMC`, and
ciprofloxacin `CIP`), based on historical data grouped by year and
hospital ward.
### **Objective**
Our goal is to:
1. Prepare the dataset by aggregating resistance data over time.
2. Define a regression model to predict AMR trends.
3. Use `tidymodels` to preprocess, train, and evaluate the model.
### **Data Preparation**
We start by transforming the `example_isolates` dataset into a
structured time-series format.
``` r
# Load required libraries
library(AMR)
library(tidymodels)
# Transform dataset
data_time <- example_isolates %>%
top_n_microorganisms(n = 10) %>% # Filter on the top #10 species
mutate(year = as.integer(format(date, "%Y")), # Extract year from date
gramstain = mo_gramstain(mo)) %>% # Get taxonomic names
group_by(year, gramstain) %>%
summarise(across(c(AMX, AMC, CIP),
function(x) resistance(x, minimum = 0),
.names = "res_{.col}"),
.groups = "drop") %>%
filter(!is.na(res_AMX) & !is.na(res_AMC) & !is.na(res_CIP)) # Drop missing values
#> Using column 'mo' as input for `col_mo`.
data_time
#> # A tibble: 32 × 5
#> year gramstain res_AMX res_AMC res_CIP
#> <int> <chr> <dbl> <dbl> <dbl>
#> 1 2002 Gram-negative 1 0.105 0.0606
#> 2 2002 Gram-positive 0.838 0.182 0.162
#> 3 2003 Gram-negative 1 0.0714 0
#> 4 2003 Gram-positive 0.714 0.244 0.154
#> 5 2004 Gram-negative 0.464 0.0938 0
#> 6 2004 Gram-positive 0.849 0.299 0.244
#> 7 2005 Gram-negative 0.412 0.132 0.0588
#> 8 2005 Gram-positive 0.882 0.382 0.154
#> 9 2006 Gram-negative 0.379 0 0.1
#> 10 2006 Gram-positive 0.778 0.333 0.353
#> # 22 more rows
```
**Explanation:**
- `mo_name(mo)`: Converts microbial codes into proper species names.
- [`resistance()`](https://amr-for-r.org/reference/proportion.md):
Converts AMR results into numeric values (proportion of resistant
isolates).
- `group_by(year, ward, species)`: Aggregates resistance rates by year
and ward.
### **Defining the Workflow**
We now define the modelling workflow, which consists of a preprocessing
step, a model specification, and the fitting process.
#### 1. Preprocessing with a Recipe
``` r
# Define the recipe
resistance_recipe_time <- recipe(res_AMX ~ year + gramstain, data = data_time) %>%
step_dummy(gramstain, one_hot = TRUE) %>% # Convert categorical to numerical
step_normalize(year) %>% # Normalise year for better model performance
step_nzv(all_predictors()) # Remove near-zero variance predictors
resistance_recipe_time
#>
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#>
#> ── Inputs
#> Number of variables by role
#> outcome: 1
#> predictor: 2
#>
#> ── Operations
#> • Dummy variables from: gramstain
#> • Centering and scaling for: year
#> • Sparse, unbalanced variable filter on: all_predictors()
```
**Explanation:**
- `step_dummy()`: Encodes categorical variables (`ward`, `species`) as
numerical indicators.
- `step_normalize()`: Normalises the `year` variable.
- `step_nzv()`: Removes near-zero variance predictors.
#### 2. Specifying the Model
We use a linear regression model to predict resistance trends.
``` r
# Define the linear regression model
lm_model <- linear_reg() %>%
set_engine("lm") # Use linear regression
lm_model
#> Linear Regression Model Specification (regression)
#>
#> Computational engine: lm
```
**Explanation:**
- `linear_reg()`: Defines a linear regression model.
- `set_engine("lm")`: Uses Rs built-in linear regression engine.
#### 3. Building the Workflow
We combine the preprocessing recipe and model into a workflow.
``` r
# Create workflow
resistance_workflow_time <- workflow() %>%
add_recipe(resistance_recipe_time) %>%
add_model(lm_model)
resistance_workflow_time
#> ══ Workflow ════════════════════════════════════════════════════════════════════
#> Preprocessor: Recipe
#> Model: linear_reg()
#>
#> ── Preprocessor ────────────────────────────────────────────────────────────────
#> 3 Recipe Steps
#>
#> • step_dummy()
#> • step_normalize()
#> • step_nzv()
#>
#> ── Model ───────────────────────────────────────────────────────────────────────
#> Linear Regression Model Specification (regression)
#>
#> Computational engine: lm
```
### **Training and Evaluating the Model**
We split the data into training and testing sets, fit the model, and
evaluate performance.
``` r
# Split the data
set.seed(123)
data_split_time <- initial_split(data_time, prop = 0.8)
train_time <- training(data_split_time)
test_time <- testing(data_split_time)
# Train the model
fitted_workflow_time <- resistance_workflow_time %>%
fit(train_time)
# Make predictions
predictions_time <- fitted_workflow_time %>%
predict(test_time) %>%
bind_cols(test_time)
# Evaluate model
metrics_time <- predictions_time %>%
metrics(truth = res_AMX, estimate = .pred)
metrics_time
#> # A tibble: 3 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 rmse standard 0.0774
#> 2 rsq standard 0.711
#> 3 mae standard 0.0704
```
**Explanation:**
- `initial_split()`: Splits data into training and testing sets.
- `fit()`: Trains the workflow.
- [`predict()`](https://rdrr.io/r/stats/predict.html): Generates
resistance predictions.
- `metrics()`: Evaluates model performance.
### **Visualising Predictions**
We plot resistance trends over time for amoxicillin.
``` r
library(ggplot2)
# Plot actual vs predicted resistance over time
ggplot(predictions_time, aes(x = year)) +
geom_point(aes(y = res_AMX, color = "Actual")) +
geom_line(aes(y = .pred, color = "Predicted")) +
labs(title = "Predicted vs Actual AMX Resistance Over Time",
x = "Year",
y = "Resistance Proportion") +
theme_minimal()
```
![](AMR_with_tidymodels_files/figure-html/unnamed-chunk-14-1.png)
Additionally, we can visualise resistance trends in `ggplot2` and
directly add linear models there:
``` r
ggplot(data_time, aes(x = year, y = res_AMX, color = gramstain)) +
geom_line() +
labs(title = "AMX Resistance Trends",
x = "Year",
y = "Resistance Proportion") +
# add a linear model directly in ggplot2:
geom_smooth(method = "lm",
formula = y ~ x,
alpha = 0.25) +
theme_minimal()
```
![](AMR_with_tidymodels_files/figure-html/unnamed-chunk-15-1.png)
### **Conclusion**
In this example, we demonstrated how to analyze AMR trends over time
using `tidymodels`. By aggregating resistance rates by year and hospital
ward, we built a predictive model to track changes in resistance to
amoxicillin (`AMX`), amoxicillin-clavulanic acid (`AMC`), and
ciprofloxacin (`CIP`).
This method can be extended to other antibiotics and resistance
patterns, providing valuable insights into AMR dynamics in healthcare
settings.