1
0
mirror of https://github.com/msberends/AMR.git synced 2025-12-16 06:30:21 +01:00
Files
AMR/reference/count.md
2025-11-24 10:42:21 +00:00

271 lines
9.5 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Count Available Isolates
These functions can be used to count resistant/susceptible microbial
isolates. All functions support quasiquotation with pipes, can be used
in [`summarise()`](https://dplyr.tidyverse.org/reference/summarise.html)
from the `dplyr` package and also support grouped variables, see
*Examples*.
`count_resistant()` should be used to count resistant isolates,
`count_susceptible()` should be used to count susceptible isolates.
## Usage
``` r
count_resistant(..., only_all_tested = FALSE)
count_susceptible(..., only_all_tested = FALSE)
count_S(..., only_all_tested = FALSE)
count_SI(..., only_all_tested = FALSE)
count_I(..., only_all_tested = FALSE)
count_IR(..., only_all_tested = FALSE)
count_R(..., only_all_tested = FALSE)
count_all(..., only_all_tested = FALSE)
n_sir(..., only_all_tested = FALSE)
count_df(data, translate_ab = "name", language = get_AMR_locale(),
combine_SI = TRUE)
```
## Arguments
- ...:
One or more vectors (or columns) with antibiotic interpretations. They
will be transformed internally with
[`as.sir()`](https://amr-for-r.org/reference/as.sir.md) if needed.
- only_all_tested:
(for combination therapies, i.e. using more than one variable for
`...`): a [logical](https://rdrr.io/r/base/logical.html) to indicate
that isolates must be tested for all antimicrobials, see section
*Combination Therapy* below.
- data:
A [data.frame](https://rdrr.io/r/base/data.frame.html) containing
columns with class [`sir`](https://amr-for-r.org/reference/as.sir.md)
(see [`as.sir()`](https://amr-for-r.org/reference/as.sir.md)).
- translate_ab:
A column name of the
[antimicrobials](https://amr-for-r.org/reference/antimicrobials.md)
data set to translate the antibiotic abbreviations to, using
[`ab_property()`](https://amr-for-r.org/reference/ab_property.md).
- language:
Language of the returned text - the default is the current system
language (see
[`get_AMR_locale()`](https://amr-for-r.org/reference/translate.md))
and can also be set with the package option
[`AMR_locale`](https://amr-for-r.org/reference/AMR-options.md). Use
`language = NULL` or `language = ""` to prevent translation.
- combine_SI:
A [logical](https://rdrr.io/r/base/logical.html) to indicate whether
all values of S, SDD, and I must be merged into one, so the output
only consists of S+SDD+I vs. R (susceptible vs. resistant) - the
default is `TRUE`.
## Value
An [integer](https://rdrr.io/r/base/integer.html)
## Details
These functions are meant to count isolates. Use the
[`resistance()`](https://amr-for-r.org/reference/proportion.md)/[`susceptibility()`](https://amr-for-r.org/reference/proportion.md)
functions to calculate microbial resistance/susceptibility.
The function `count_resistant()` is equal to the function `count_R()`.
The function `count_susceptible()` is equal to the function
`count_SI()`.
The function `n_sir()` is an alias of `count_all()`. They can be used to
count all available isolates, i.e. where all input antimicrobials have
an available result (S, I or R). Their use is equal to
[`n_distinct()`](https://dplyr.tidyverse.org/reference/n_distinct.html).
Their function is equal to
`count_susceptible(...) + count_resistant(...)`.
The function `count_df()` takes any variable from `data` that has an
[`sir`](https://amr-for-r.org/reference/as.sir.md) class (created with
[`as.sir()`](https://amr-for-r.org/reference/as.sir.md)) and counts the
number of S's, I's and R's. It also supports grouped variables. The
function [`sir_df()`](https://amr-for-r.org/reference/proportion.md)
works exactly like `count_df()`, but adds the percentage of S, I and R.
## Interpretation of SIR
In 2019, the European Committee on Antimicrobial Susceptibility Testing
(EUCAST) has decided to change the definitions of susceptibility testing
categories S, I, and R (<https://www.eucast.org/newsiandr>).
This AMR package follows insight; use
[`susceptibility()`](https://amr-for-r.org/reference/proportion.md)
(equal to
[`proportion_SI()`](https://amr-for-r.org/reference/proportion.md)) to
determine antimicrobial susceptibility and `count_susceptible()` (equal
to `count_SI()`) to count susceptible isolates.
## Combination Therapy
When using more than one variable for `...` (= combination therapy), use
`only_all_tested` to only count isolates that are tested for all
antimicrobials/variables that you test them for. See this example for
two antimicrobials, Drug A and Drug B, about how
[`susceptibility()`](https://amr-for-r.org/reference/proportion.md)
works to calculate the %SI:
--------------------------------------------------------------------
only_all_tested = FALSE only_all_tested = TRUE
----------------------- -----------------------
Drug A Drug B considered considered considered considered
susceptible tested susceptible tested
-------- -------- ----------- ---------- ----------- ----------
S or I S or I X X X X
R S or I X X X X
<NA> S or I X X - -
S or I R X X X X
R R - X - X
<NA> R - - - -
S or I <NA> X X - -
R <NA> - - - -
<NA> <NA> - - - -
--------------------------------------------------------------------
Please note that, in combination therapies, for `only_all_tested = TRUE`
applies that:
count_S() + count_I() + count_R() = count_all()
proportion_S() + proportion_I() + proportion_R() = 1
and that, in combination therapies, for `only_all_tested = FALSE`
applies that:
count_S() + count_I() + count_R() >= count_all()
proportion_S() + proportion_I() + proportion_R() >= 1
Using `only_all_tested` has no impact when only using one antibiotic as
input.
## See also
[`proportion_*`](https://amr-for-r.org/reference/proportion.md) to
calculate microbial resistance and susceptibility.
## Examples
``` r
# example_isolates is a data set available in the AMR package.
# run ?example_isolates for more info.
# base R ------------------------------------------------------------
count_resistant(example_isolates$AMX) # counts "R"
#> [1] 804
count_susceptible(example_isolates$AMX) # counts "S" and "I"
#> [1] 546
count_all(example_isolates$AMX) # counts "S", "I" and "R"
#> [1] 1350
# be more specific
count_S(example_isolates$AMX)
#> [1] 543
count_SI(example_isolates$AMX)
#> [1] 546
count_I(example_isolates$AMX)
#> [1] 3
count_IR(example_isolates$AMX)
#> [1] 807
count_R(example_isolates$AMX)
#> [1] 804
# Count all available isolates
count_all(example_isolates$AMX)
#> [1] 1350
n_sir(example_isolates$AMX)
#> [1] 1350
# n_sir() is an alias of count_all().
# Since it counts all available isolates, you can
# calculate back to count e.g. susceptible isolates.
# These results are the same:
count_susceptible(example_isolates$AMX)
#> [1] 546
susceptibility(example_isolates$AMX) * n_sir(example_isolates$AMX)
#> [1] 546
# dplyr -------------------------------------------------------------
# \donttest{
if (require("dplyr")) {
example_isolates %>%
group_by(ward) %>%
summarise(
R = count_R(CIP),
I = count_I(CIP),
S = count_S(CIP),
n1 = count_all(CIP), # the actual total; sum of all three
n2 = n_sir(CIP), # same - analogous to n_distinct
total = n()
) # NOT the number of tested isolates!
# Number of available isolates for a whole antibiotic class
# (i.e., in this data set columns GEN, TOB, AMK, KAN)
example_isolates %>%
group_by(ward) %>%
summarise(across(aminoglycosides(), n_sir))
# Count co-resistance between amoxicillin/clav acid and gentamicin,
# so we can see that combination therapy does a lot more than mono therapy.
# Please mind that `susceptibility()` calculates percentages right away instead.
example_isolates %>% count_susceptible(AMC) # 1433
example_isolates %>% count_all(AMC) # 1879
example_isolates %>% count_susceptible(GEN) # 1399
example_isolates %>% count_all(GEN) # 1855
example_isolates %>% count_susceptible(AMC, GEN) # 1764
example_isolates %>% count_all(AMC, GEN) # 1936
# Get number of S+I vs. R immediately of selected columns
example_isolates %>%
select(AMX, CIP) %>%
count_df(translate = FALSE)
# It also supports grouping variables
example_isolates %>%
select(ward, AMX, CIP) %>%
group_by(ward) %>%
count_df(translate = FALSE)
}
#> For `aminoglycosides()` using columns 'GEN' (gentamicin), 'TOB'
#> (tobramycin), 'AMK' (amikacin), and 'KAN' (kanamycin)
#> # A tibble: 12 × 4
#> ward antibiotic interpretation value
#> <chr> <chr> <ord> <int>
#> 1 Clinical AMX SI 357
#> 2 Clinical AMX R 487
#> 3 Clinical CIP SI 741
#> 4 Clinical CIP R 128
#> 5 ICU AMX SI 158
#> 6 ICU AMX R 270
#> 7 ICU CIP SI 362
#> 8 ICU CIP R 85
#> 9 Outpatient AMX SI 31
#> 10 Outpatient AMX R 47
#> 11 Outpatient CIP SI 78
#> 12 Outpatient CIP R 15
# }
```