mirror of https://github.com/msberends/AMR.git
392 lines
15 KiB
R
Executable File
392 lines
15 KiB
R
Executable File
# ==================================================================== #
|
|
# TITLE #
|
|
# Antimicrobial Resistance (AMR) Analysis #
|
|
# #
|
|
# SOURCE #
|
|
# https://gitlab.com/msberends/AMR #
|
|
# #
|
|
# LICENCE #
|
|
# (c) 2019 Berends MS (m.s.berends@umcg.nl), Luz CF (c.f.luz@umcg.nl) #
|
|
# #
|
|
# This R package is free software; you can freely use and distribute #
|
|
# it for both personal and commercial purposes under the terms of the #
|
|
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
|
|
# the Free Software Foundation. #
|
|
# #
|
|
# This R package was created for academic research and was publicly #
|
|
# released in the hope that it will be useful, but it comes WITHOUT #
|
|
# ANY WARRANTY OR LIABILITY. #
|
|
# Visit our website for more info: https://msberends.gitlab.io/AMR. #
|
|
# ==================================================================== #
|
|
|
|
#' AMR plots with \code{ggplot2}
|
|
#'
|
|
#' Use these functions to create bar plots for antimicrobial resistance analysis. All functions rely on internal \code{\link[ggplot2]{ggplot}} functions.
|
|
#' @param data a \code{data.frame} with column(s) of class \code{"rsi"} (see \code{\link{as.rsi}})
|
|
#' @param position position adjustment of bars, either \code{"fill"} (default when \code{fun} is \code{\link{count_df}}), \code{"stack"} (default when \code{fun} is \code{\link{portion_df}}) or \code{"dodge"}
|
|
#' @param x variable to show on x axis, either \code{"Antibiotic"} (default) or \code{"Interpretation"} or a grouping variable
|
|
#' @param fill variable to categorise using the plots legend, either \code{"Antibiotic"} (default) or \code{"Interpretation"} or a grouping variable
|
|
#' @param breaks numeric vector of positions
|
|
#' @param limits numeric vector of length two providing limits of the scale, use \code{NA} to refer to the existing minimum or maximum
|
|
#' @param facet variable to split plots by, either \code{"Interpretation"} (default) or \code{"Antibiotic"} or a grouping variable
|
|
#' @param fun function to transform \code{data}, either \code{\link{count_df}} (default) or \code{\link{portion_df}}
|
|
#' @inheritParams portion
|
|
#' @param nrow (when using \code{facet}) number of rows
|
|
#' @param datalabels show datalabels using \code{labels_rsi_count}, will at default only be shown when \code{fun = count_df}
|
|
#' @param datalabels.size size of the datalabels
|
|
#' @param datalabels.colour colour of the datalabels
|
|
#' @param ... other parameters passed on to \code{geom_rsi}
|
|
#' @details At default, the names of antibiotics will be shown on the plots using \code{\link{ab_name}}. This can be set with the option \code{get_antibiotic_names} (a logical value), so change it e.g. to \code{FALSE} with \code{options(get_antibiotic_names = FALSE)}.
|
|
#'
|
|
#' \strong{The functions}\cr
|
|
#' \code{geom_rsi} will take any variable from the data that has an \code{rsi} class (created with \code{\link{as.rsi}}) using \code{fun} (\code{\link{count_df}} at default, can also be \code{\link{portion_df}}) and will plot bars with the percentage R, I and S. The default behaviour is to have the bars stacked and to have the different antibiotics on the x axis.
|
|
#'
|
|
#' \code{facet_rsi} creates 2d plots (at default based on S/I/R) using \code{\link[ggplot2]{facet_wrap}}.
|
|
#'
|
|
#' \code{scale_y_percent} transforms the y axis to a 0 to 100\% range using \code{\link[ggplot2]{scale_continuous}}.
|
|
#'
|
|
#' \code{scale_rsi_colours} sets colours to the bars: green for S, yellow for I and red for R, using \code{\link[ggplot2]{scale_brewer}}.
|
|
#'
|
|
#' \code{theme_rsi} is a \code{ggplot \link[ggplot2]{theme}} with minimal distraction.
|
|
#'
|
|
#' \code{labels_rsi_count} print datalabels on the bars with percentage and amount of isolates using \code{\link[ggplot2]{geom_text}}
|
|
#'
|
|
#' \code{ggplot_rsi} is a wrapper around all above functions that uses data as first input. This makes it possible to use this function after a pipe (\code{\%>\%}). See Examples.
|
|
#' @rdname ggplot_rsi
|
|
#' @importFrom utils installed.packages
|
|
#' @export
|
|
#' @inheritSection AMR Read more on our website!
|
|
#' @examples
|
|
#' library(dplyr)
|
|
#' library(ggplot2)
|
|
#'
|
|
#' # get antimicrobial results for drugs against a UTI:
|
|
#' ggplot(septic_patients %>% select(AMX, NIT, FOS, TMP, CIP)) +
|
|
#' geom_rsi()
|
|
#'
|
|
#' # prettify the plot using some additional functions:
|
|
#' df <- septic_patients[, c("AMX", "NIT", "FOS", "TMP", "CIP")]
|
|
#' ggplot(df) +
|
|
#' geom_rsi() +
|
|
#' scale_y_percent() +
|
|
#' scale_rsi_colours() +
|
|
#' labels_rsi_count() +
|
|
#' theme_rsi()
|
|
#'
|
|
#' # or better yet, simplify this using the wrapper function - a single command:
|
|
#' septic_patients %>%
|
|
#' select(AMX, NIT, FOS, TMP, CIP) %>%
|
|
#' ggplot_rsi()
|
|
#'
|
|
#' # get only portions and no counts:
|
|
#' septic_patients %>%
|
|
#' select(AMX, NIT, FOS, TMP, CIP) %>%
|
|
#' ggplot_rsi(fun = portion_df)
|
|
#'
|
|
#' # add other ggplot2 parameters as you like:
|
|
#' septic_patients %>%
|
|
#' select(AMX, NIT, FOS, TMP, CIP) %>%
|
|
#' ggplot_rsi(width = 0.5,
|
|
#' colour = "black",
|
|
#' size = 1,
|
|
#' linetype = 2,
|
|
#' alpha = 0.25)
|
|
#'
|
|
#' # resistance of ciprofloxacine per age group
|
|
#' septic_patients %>%
|
|
#' mutate(first_isolate = first_isolate(.)) %>%
|
|
#' filter(first_isolate == TRUE,
|
|
#' mo == as.mo("E. coli")) %>%
|
|
#' # `age_group` is also a function of this package:
|
|
#' group_by(age_group = age_groups(age)) %>%
|
|
#' select(age_group,
|
|
#' CIP) %>%
|
|
#' ggplot_rsi(x = "age_group")
|
|
#' \donttest{
|
|
#'
|
|
#' # for colourblind mode, use divergent colours from the viridis package:
|
|
#' septic_patients %>%
|
|
#' select(AMX, NIT, FOS, TMP, CIP) %>%
|
|
#' ggplot_rsi() + scale_fill_viridis_d()
|
|
#'
|
|
#'
|
|
#' # it also supports groups (don't forget to use the group var on `x` or `facet`):
|
|
#' septic_patients %>%
|
|
#' select(hospital_id, AMX, NIT, FOS, TMP, CIP) %>%
|
|
#' group_by(hospital_id) %>%
|
|
#' ggplot_rsi(x = hospital_id,
|
|
#' facet = Antibiotic,
|
|
#' nrow = 1) +
|
|
#' labs(title = "AMR of Anti-UTI Drugs Per Hospital",
|
|
#' x = "Hospital")
|
|
#'
|
|
#' # genuine analysis: check 2 most prevalent microorganisms
|
|
#' septic_patients %>%
|
|
#' # create new bacterial ID's, with all CoNS under the same group (Becker et al.)
|
|
#' mutate(mo = as.mo(mo, Becker = TRUE)) %>%
|
|
#' # filter on top three bacterial ID's
|
|
#' filter(mo %in% top_freq(freq(.$mo), 3)) %>%
|
|
#' # determine first isolates
|
|
#' mutate(first_isolate = first_isolate(.,
|
|
#' col_date = "date",
|
|
#' col_patient_id = "patient_id",
|
|
#' col_mo = "mo")) %>%
|
|
#' # filter on first isolates
|
|
#' filter(first_isolate == TRUE) %>%
|
|
#' # get short MO names (like "E. coli")
|
|
#' mutate(mo = mo_shortname(mo, Becker = TRUE)) %>%
|
|
#' # select this short name and some antiseptic drugs
|
|
#' select(mo, CXM, GEN, CIP) %>%
|
|
#' # group by MO
|
|
#' group_by(mo) %>%
|
|
#' # plot the thing, putting MOs on the facet
|
|
#' ggplot_rsi(x = Antibiotic,
|
|
#' facet = mo,
|
|
#' translate_ab = FALSE,
|
|
#' nrow = 1) +
|
|
#' labs(title = "AMR of Top Three Microorganisms In Blood Culture Isolates",
|
|
#' subtitle = "Only First Isolates, CoNS grouped according to Becker et al. (2014)",
|
|
#' x = "Microorganisms")
|
|
#' }
|
|
ggplot_rsi <- function(data,
|
|
position = NULL,
|
|
x = "Antibiotic",
|
|
fill = "Interpretation",
|
|
# params = list(),
|
|
facet = NULL,
|
|
breaks = seq(0, 1, 0.1),
|
|
limits = NULL,
|
|
translate_ab = "name",
|
|
combine_SI = TRUE,
|
|
combine_IR = FALSE,
|
|
language = get_locale(),
|
|
fun = count_df,
|
|
nrow = NULL,
|
|
datalabels = FALSE,
|
|
datalabels.size = 3,
|
|
datalabels.colour = "white",
|
|
...) {
|
|
|
|
stopifnot_installed_package("ggplot2")
|
|
|
|
fun_name <- deparse(substitute(fun))
|
|
if (!fun_name %in% c("portion_df", "count_df")) {
|
|
stop("`fun` must be portion_df or count_df")
|
|
}
|
|
|
|
x <- x[1]
|
|
facet <- facet[1]
|
|
|
|
# we work with aes_string later on
|
|
x_deparse <- deparse(substitute(x))
|
|
if (x_deparse != "x") {
|
|
x <- x_deparse
|
|
}
|
|
if (x %like% '".*"') {
|
|
x <- substr(x, 2, nchar(x) - 1)
|
|
}
|
|
facet_deparse <- deparse(substitute(facet))
|
|
if (facet_deparse != "facet") {
|
|
facet <- facet_deparse
|
|
}
|
|
if (facet %like% '".*"') {
|
|
facet <- substr(facet, 2, nchar(facet) - 1)
|
|
}
|
|
if (facet %in% c("NULL", "")) {
|
|
facet <- NULL
|
|
}
|
|
|
|
p <- ggplot2::ggplot(data = data) +
|
|
geom_rsi(position = position, x = x, fill = fill, translate_ab = translate_ab,
|
|
fun = fun, combine_SI = combine_SI, combine_IR = combine_IR, ...) +
|
|
theme_rsi()
|
|
|
|
if (fill == "Interpretation") {
|
|
# set RSI colours
|
|
p <- p + scale_rsi_colours()
|
|
}
|
|
if (is.null(position)) {
|
|
position <- "fill"
|
|
}
|
|
if (fun_name == "portion_df"
|
|
| (fun_name == "count_df" & identical(position, "fill"))) {
|
|
# portions, so use y scale with percentage
|
|
p <- p + scale_y_percent(breaks = breaks, limits = limits)
|
|
}
|
|
|
|
if (fun_name == "count_df" & datalabels == TRUE) {
|
|
p <- p + labels_rsi_count(position = position,
|
|
x = x,
|
|
datalabels.size = datalabels.size,
|
|
datalabels.colour = datalabels.colour)
|
|
}
|
|
|
|
if (!is.null(facet)) {
|
|
p <- p + facet_rsi(facet = facet, nrow = nrow)
|
|
}
|
|
|
|
p
|
|
}
|
|
|
|
#' @rdname ggplot_rsi
|
|
#' @export
|
|
geom_rsi <- function(position = NULL,
|
|
x = c("Antibiotic", "Interpretation"),
|
|
fill = "Interpretation",
|
|
translate_ab = "name",
|
|
language = get_locale(),
|
|
combine_SI = TRUE,
|
|
combine_IR = FALSE,
|
|
fun = count_df,
|
|
...) {
|
|
|
|
stopifnot_installed_package("ggplot2")
|
|
|
|
if (is.data.frame(position)) {
|
|
stop("`position` is invalid. Did you accidentally use '%>%' instead of '+'?", call. = FALSE)
|
|
}
|
|
|
|
fun_name <- deparse(substitute(fun))
|
|
if (!fun_name %in% c("portion_df", "count_df", "fun")) {
|
|
stop("`fun` must be portion_df or count_df")
|
|
}
|
|
y <- "Value"
|
|
if (identical(fun, count_df)) {
|
|
if (missing(position) | is.null(position)) {
|
|
position <- "fill"
|
|
}
|
|
} else {
|
|
if (missing(position) | is.null(position)) {
|
|
position <- "stack"
|
|
}
|
|
}
|
|
|
|
x <- x[1]
|
|
|
|
# we work with aes_string later on
|
|
x_deparse <- deparse(substitute(x))
|
|
if (x_deparse != "x") {
|
|
x <- x_deparse
|
|
}
|
|
if (x %like% '".*"') {
|
|
x <- substr(x, 2, nchar(x) - 1)
|
|
}
|
|
|
|
if (tolower(x) %in% tolower(c('ab', 'antibiotic', 'abx', 'antibiotics'))) {
|
|
x <- "Antibiotic"
|
|
} else if (tolower(x) %in% tolower(c('SIR', 'RSI', 'interpretation', 'interpretations', 'result'))) {
|
|
x <- "Interpretation"
|
|
}
|
|
|
|
ggplot2::layer(geom = "bar", stat = "identity", position = position,
|
|
mapping = ggplot2::aes_string(x = x, y = y, fill = fill),
|
|
params = list(...), data = function(x) {
|
|
fun(data = x,
|
|
translate_ab = translate_ab,
|
|
language = language,
|
|
combine_SI = combine_SI,
|
|
combine_IR = combine_IR)
|
|
})
|
|
|
|
}
|
|
|
|
#' @rdname ggplot_rsi
|
|
#' @export
|
|
facet_rsi <- function(facet = c("Interpretation", "Antibiotic"), nrow = NULL) {
|
|
|
|
stopifnot_installed_package("ggplot2")
|
|
|
|
facet <- facet[1]
|
|
|
|
# we work with aes_string later on
|
|
facet_deparse <- deparse(substitute(facet))
|
|
if (facet_deparse != "facet") {
|
|
facet <- facet_deparse
|
|
}
|
|
if (facet %like% '".*"') {
|
|
facet <- substr(facet, 2, nchar(facet) - 1)
|
|
}
|
|
|
|
if (tolower(facet) %in% tolower(c('SIR', 'RSI', 'interpretation', 'interpretations', 'result'))) {
|
|
facet <- "Interpretation"
|
|
} else if (tolower(facet) %in% tolower(c('ab', 'antibiotic', 'abx', 'antibiotics'))) {
|
|
facet <- "Antibiotic"
|
|
}
|
|
|
|
ggplot2::facet_wrap(facets = facet, scales = "free_x", nrow = nrow)
|
|
}
|
|
|
|
#' @rdname ggplot_rsi
|
|
#' @export
|
|
scale_y_percent <- function(breaks = seq(0, 1, 0.1), limits = NULL) {
|
|
stopifnot_installed_package("ggplot2")
|
|
|
|
if (all(breaks[breaks != 0] > 1)) {
|
|
breaks <- breaks / 100
|
|
}
|
|
ggplot2::scale_y_continuous(breaks = breaks,
|
|
labels = percent(breaks),
|
|
limits = limits)
|
|
}
|
|
|
|
#' @rdname ggplot_rsi
|
|
#' @export
|
|
scale_rsi_colours <- function() {
|
|
stopifnot_installed_package("ggplot2")
|
|
#ggplot2::scale_fill_brewer(palette = "RdYlGn")
|
|
#ggplot2::scale_fill_manual(values = c("#b22222", "#ae9c20", "#7cfc00"))
|
|
|
|
# mixed using https://www.colorhexa.com/b22222
|
|
# and https://www.w3schools.com/colors/colors_mixer.asp
|
|
ggplot2::scale_fill_manual(values = c(S = "#22b222",
|
|
SI = "#22b222",
|
|
I = "#548022",
|
|
IR = "#b22222",
|
|
R = "#b22222"))
|
|
|
|
}
|
|
|
|
#' @rdname ggplot_rsi
|
|
#' @export
|
|
theme_rsi <- function() {
|
|
stopifnot_installed_package("ggplot2")
|
|
ggplot2::theme_minimal() +
|
|
ggplot2::theme(panel.grid.major.x = ggplot2::element_blank(),
|
|
panel.grid.minor = ggplot2::element_blank(),
|
|
panel.grid.major.y = ggplot2::element_line(colour = "grey75"))
|
|
}
|
|
|
|
#' @rdname ggplot_rsi
|
|
#' @export
|
|
labels_rsi_count <- function(position = NULL,
|
|
x = "Antibiotic",
|
|
datalabels.size = 3,
|
|
datalabels.colour = "white") {
|
|
stopifnot_installed_package("ggplot2")
|
|
if (is.null(position)) {
|
|
position <- "fill"
|
|
}
|
|
if (identical(position, "fill")) {
|
|
position <- ggplot2::position_fill(vjust = 0.5, reverse = TRUE)
|
|
}
|
|
ggplot2::geom_text(mapping = ggplot2::aes_string(label = "lbl",
|
|
x = x,
|
|
y = "Value"),
|
|
position = position,
|
|
data = getlbls,
|
|
inherit.aes = FALSE,
|
|
size = datalabels.size,
|
|
colour = datalabels.colour)
|
|
}
|
|
|
|
#' @importFrom dplyr %>% group_by mutate
|
|
getlbls <- function(data) {
|
|
data %>%
|
|
count_df() %>%
|
|
group_by(Antibiotic) %>%
|
|
mutate(lbl = paste0(percent(Value / sum(Value, na.rm = TRUE), force_zero = TRUE),
|
|
" (n=", Value, ")")) %>%
|
|
mutate(lbl = ifelse(lbl == "0.0% (n=0)", "", lbl))
|
|
}
|
|
|