AMR/R/trends.R

124 lines
3.5 KiB
R

#' Detect trends using Machine Learning
#'
#' Test text
#' @param data a \code{data.frame}
#' @param threshold_unique do not analyse more unique \code{threshold_unique} items per variable
#' @param na.rm a logical value indicating whether \code{NA} values should be stripped before the computation proceeds.
#' @param info print relevant combinations to console
#' @return A \code{list} with class \code{"trends"}
#' @importFrom stats na.omit
#' @importFrom broom tidy
# @export
trends <- function(data, threshold_unique = 30, na.rm = TRUE, info = TRUE) {
cols <- colnames(data)
relevant <- list()
count <- 0
for (x in 1:length(cols)) {
for (y in 1:length(cols)) {
if (x == y) {
next
}
if (n_distinct(data[, x]) > threshold_unique | n_distinct(data[, y]) > threshold_unique) {
next
}
count <- count + 1
df <- data %>%
group_by_at(c(cols[x], cols[y])) %>%
summarise(n = n())
n <- df %>% pull(n)
# linear regression model
lin <- stats::lm(1:length(n) ~ n, na.action = ifelse(na.rm == TRUE, na.omit, NULL))
res <- list(
df = df,
x = cols[x],
y = cols[y],
m = base::mean(n, na.rm = na.rm),
sd = stats::sd(n, na.rm = na.rm),
cv = cv(n, na.rm = na.rm),
cqv = cqv(n, na.rm = na.rm),
kurtosis = kurtosis(n, na.rm = na.rm),
skewness = skewness(n, na.rm = na.rm),
lin.p = broom::tidy(lin)[2, 'p.value']
#binom.p <- broom::tidy(binom)[2, 'p.value']
)
include <- TRUE
# ML part
if (res$cv > 0.25) {
res$reason <- "cv > 0.25"
} else if (res$cqv > 0.75) {
res$reason <- "cqv > 0.75"
} else {
include <- FALSE
}
if (include == TRUE) {
relevant <- c(relevant, list(res))
if (info == TRUE) {
# minus one because the whole data will be added later
cat(paste0("[", length(relevant), "]"), "Relevant:", cols[x], "vs.", cols[y], "\n")
}
}
}
}
cat("Total of", count, "combinations analysed;", length(relevant), "seem relevant.\n")
class(relevant) <- 'trends'
relevant <- c(relevant, list(data = data))
relevant
}
# @exportMethod print.trends
# @export
#' @noRd
print.trends <- function(x, ...) {
cat(length(x) - 1, "relevant trends, out of", length(x$data)^2, "\n")
}
# @exportMethod plot.trends
# @export
#' @noRd
# plot.trends <- function(x, n = NULL, ...) {
# if (is.null(n)) {
# oask <- devAskNewPage(TRUE)
# on.exit(devAskNewPage(oask))
# n <- c(1:(length(x) - 1))
# } else {
# if (n > length(x) - 1) {
# stop('trend unavailable, max is ', length(x) - 1, call. = FALSE)
# }
# oask <- NULL
# }
# for (i in n) {
# data <- x[[i]]$df
# if (as.character(i) %like% '1$') {
# suffix <- "st"
# } else if (as.character(i) %like% '2$') {
# suffix <- "nd"
# } else if (as.character(i) %like% '3$') {
# suffix <- "rd"
# } else {
# suffix <- "th"
# }
# if (!is.null(oask)) {
# cat(paste("Coming up:", colnames(data)[1], "vs.", colnames(data)[2]), "\n")
# }
# print(
# ggplot(
# data,
# aes_string(x = colnames(data)[1],
# y = colnames(data)[3],
# group = colnames(data)[2],
# fill = colnames(data)[2])) +
# geom_col(position = "dodge") +
# theme_minimal() +
# labs(title = paste(colnames(data)[1], "vs.", colnames(data)[2]),
# subtitle = paste0(i, suffix, " trend"))
# )
# }
# }