13 KiB
AMR
(for R)
(TLDR - to find out how to conduct AMR analysis, please continue reading here to get started.
AMR
is a free and open-source R package to simplify the analysis and prediction of Antimicrobial Resistance (AMR) and to work with microbial and antimicrobial properties by using evidence-based methods. It supports any data format, including WHONET/EARS-Net data.
After installing this package, R knows almost all ~20,000 microorganisms and ~500 antibiotics by name and code, and knows all about valid RSI and MIC values.
Used to SPSS? Read our tutorial on how to import data from SPSS, SAS or Stata and learn in which ways R outclasses any of these statistical packages.
We created this package for both academic research and routine analysis at the Faculty of Medical Sciences of the University of Groningen, the Netherlands, and the Medical Microbiology & Infection Prevention (MMBI) department of the University Medical Center Groningen (UMCG). This R package is actively maintained and is free software; you can freely use and distribute it for both personal and commercial (but not patent) purposes under the terms of the GNU General Public License version 2.0 (GPL-2), as published by the Free Software Foundation. Read the full license here.
This package can be used for:
- Calculating antimicrobial resistance
- Calculating empirical susceptibility of both mono therapy and combination therapy
- Predicting future antimicrobial resistance using regression models
- Getting properties for any microorganism (like Gram stain, species, genus or family)
- Getting properties for any antibiotic (like name, ATC code, defined daily dose or trade name)
- Plotting antimicrobial resistance
- Determining first isolates to be used for AMR analysis
- Applying EUCAST rules
- Determining multi-drug resistant organisms (MDRO)
- Descriptive statistics: frequency tables, kurtosis and skewness
This package is ready-to-use for a professional environment by specialists in the following fields:
Medical Microbiology
- Epidemiologists (both clinical microbiological and research)
- Research Microbiologists
- Biomedical Researchers
- Research Pharmacologists
- Data Scientists / Data Analysts
Veterinary Microbiology
- Research Veterinarians
- Veterinary Epidemiologists
Microbial Ecology
- Soil Microbiologists
- Extremophile Researchers
- Astrobiologists
Developers
- Package developers for R
- Software developers
- Web application / Shiny developers
Get this package
Latest released version
This package is available on the official R network (CRAN), which has a peer-reviewed submission process. Install this package in R with:
install.packages("AMR")
It will be downloaded and installed automatically. For RStudio, click on the menu Tools > Install Packages... and then type in "AMR" and press Install.
Latest development version
The latest and unpublished development version can be installed with (precaution: may be unstable):
install.packages("devtools")
devtools::install_gitlab("msberends/AMR")
Get started
To find out how to conduct AMR analysis, please continue reading here to get started or click the links in the 'How to' menu.
Short introduction
WHONET / EARS-Net
We support WHONET and EARS-Net data. Exported files from WHONET can be imported into R and can be analysed easily using this package. For education purposes, we created an example data set WHONET
with the exact same structure as a WHONET export file. Furthermore, this package also contains a data set antibiotics
with all EARS-Net antibiotic abbreviations, and knows almost all WHONET abbreviations for microorganisms. When using WHONET data as input for analysis, all input parameters will be set automatically.
Read our tutorial about how to work with WHONET data here.
Antimicrobial reference data
WHO Collaborating Centre for Drug Statistics Methodology
This package contains all ~500 antimicrobial drugs and their Anatomical Therapeutic Chemical (ATC) codes, ATC groups and Defined Daily Dose (DDD) from the World Health Organization Collaborating Centre for Drug Statistics Methodology (WHOCC, https://www.whocc.no) and the Pharmaceuticals Community Register of the European Commission.
Read more about the data from WHOCC in our manual.
Microbial (taxonomic) reference data
This package contains the complete taxonomic tree of almost all microorganisms from the authoritative and comprehensive Catalogue of Life (www.catalogueoflife.org). This data is updated annually - check the included version with catalogue_of_life_version()
.
Included are:
- All ~55,000 species from the kingdoms of Archaea, Bacteria, Protozoa and Viruses
- All ~3,000 (sub)species from these orders of the kingdom of Fungi: Eurotiales, Onygenales, Pneumocystales, Saccharomycetales and Schizosaccharomycetales. The kingdom of Fungi is a very large taxon with almost 300,000 different species, of which most are not microbial. Including everything tremendously slows down our algortihms, and not all fungi fit the scope of this package. By only including the aforementioned taxonomic orders, the most relevant species are covered (like genera Aspergillus, Candida, Pneumocystis, Saccharomyces and Trichophyton).
- All ~15,000 previously accepted names of species that have been taxonomically renamed
- The responsible author(s) and year of scientific publication
The Catalogue of Life (www.catalogueoflife.org) is the most comprehensive and authoritative global index of species currently available. It holds essential information on the names, relationships and distributions of over 1.6 million species. The Catalogue of Life is used to support the major biodiversity and conservation information services such as the Global Biodiversity Information Facility (GBIF), Encyclopedia of Life (EoL) and the International Union for Conservation of Nature Red List. It is recognised by the Convention on Biological Diversity as a significant component of the Global Taxonomy Initiative and a contribution to Target 1 of the Global Strategy for Plant Conservation.
Read more about the data from the Catalogue of Life in our manual.
Overview of functions
The AMR
package basically does four important things:
-
It cleanses existing data by providing new classes for microoganisms, antibiotics and antimicrobial results (both S/I/R and MIC). By installing this package, you teach R everything about microbiology that is needed for analysis. These functions all use artificial intelligence to guess results that you would expect:
- Use
as.mo()
to get an ID of a microorganism. The IDs are human readable for the trained eye - the ID of Klebsiella pneumoniae is "B_KLBSL_PNE" (B stands for Bacteria) and the ID of S. aureus is "B_STPHY_AUR". The function takes almost any text as input that looks like the name or code of a microorganism like "E. coli", "esco" or "esccol" and tries to find expected results using artificial intelligence (AI) on the included ITIS data set, consisting of almost 20,000 microorganisms. It is very fast, please see our benchmarks. Moreover, it can group Staphylococci into coagulase negative and positive (CoNS and CoPS, see source) and can categorise Streptococci into Lancefield groups (like beta-haemolytic Streptococcus Group B, source). - Use
as.rsi()
to transform values to valid antimicrobial results. It produces just S, I or R based on your input and warns about invalid values. Even values like "<=0.002; S" (combined MIC/RSI) will result in "S". - Use
as.mic()
to cleanse your MIC values. It produces a so-called factor (called ordinal in SPSS) with valid MIC values as levels. A value like "<=0.002; S" (combined MIC/RSI) will result in "<=0.002". - Use
as.atc()
to get the ATC code of an antibiotic as defined by the WHO. This package contains a database with most LIS codes, official names, DDDs and even trade names of antibiotics. For example, the values "Furabid", "Furadantin", "nitro" all return the ATC code of Nitrofurantoine.
- Use
-
It enhances existing data and adds new data from data sets included in this package.
- Use
eucast_rules()
to apply EUCAST expert rules to isolates. - Use
first_isolate()
to identify the first isolates of every patient using guidelines from the CLSI (Clinical and Laboratory Standards Institute).- You can also identify first weighted isolates of every patient, an adjusted version of the CLSI guideline. This takes into account key antibiotics of every strain and compares them.
- Use
mdro()
(abbreviation of Multi Drug Resistant Organisms) to check your isolates for exceptional resistance with country-specific guidelines or EUCAST rules. Currently, national guidelines for Germany and the Netherlands are supported. - The data set
microorganisms
contains the complete taxonomic tree of almost 20,000 microorganisms (bacteria, fungi/yeasts and protozoa). Furthermore, the colloquial name and Gram stain are available, which enables resistance analysis of e.g. different antibiotics per Gram stain. The package also contains functions to look up values in this data set likemo_genus()
,mo_family()
,mo_gramstain()
or evenmo_phylum()
. As they useas.mo()
internally, they also use artificial intelligence. For example,mo_genus("MRSA")
andmo_genus("S. aureus")
will both return"Staphylococcus"
. They also come with support for German, Dutch, Spanish, Italian, French and Portuguese. These functions can be used to add new variables to your data. - The data set
antibiotics
contains almost 500 antimicrobial drugs with their ATC code, EARS-Net code, common LIS codes, official name, trivial name and DDD of both oral and parenteral administration. It also contains hundreds of trade names. Use functions likeatc_name()
andatc_tradenames()
to look up values. Theatc_*
functions useas.atc()
internally so they support AI to guess your expected result. For example,atc_name("Fluclox")
,atc_name("Floxapen")
andatc_name("J01CF05")
will all return"Flucloxacillin"
. These functions can again be used to add new variables to your data.
- Use
-
It analyses the data with convenient functions that use well-known methods.
- Calculate the resistance (and even co-resistance) of microbial isolates with the
portion_R()
,portion_IR()
,portion_I()
,portion_SI()
andportion_S()
functions. Similarly, the number of isolates can be determined with thecount_R()
,count_IR()
,count_I()
,count_SI()
andcount_S()
functions. All these functions can be used with thedplyr
package (e.g. in conjunction withsummarise()
) - Plot AMR results with
geom_rsi()
, a function made for theggplot2
package - Predict antimicrobial resistance for the nextcoming years using logistic regression models with the
resistance_predict()
function - Conduct descriptive statistics to enhance base R: calculate
kurtosis()
,skewness()
and create frequency tables withfreq()
- Calculate the resistance (and even co-resistance) of microbial isolates with the
-
It teaches the user how to use all the above actions.
- Aside from this website with many tutorials, the package itself contains extensive help pages with many examples for all functions.
- The package also contains example data sets:
- The
septic_patients
data set. This data set contains:- 2,000 blood culture isolates from anonymised septic patients between 2001 and 2017 in the Northern Netherlands
- Results of 40 antibiotics (each antibiotic in its own column) with a total ~40,000 antimicrobial results
- Real and genuine data
- The
WHONET
data set. This data set only contains fake data, but with the exact same structure as files exported by WHONET. Read more about WHONET on its tutorial page.
- The
Partners
The development of this package is part of, related to, or made possible by: