mirror of
https://github.com/msberends/AMR.git
synced 2025-01-13 20:11:37 +01:00
343 lines
15 KiB
Markdown
Executable File
343 lines
15 KiB
Markdown
Executable File
# `AMR`
|
||
### An [R package](https://www.r-project.org) to simplify the analysis and prediction of Antimicrobial Resistance (AMR) and work with antibiotic properties by using evidence-based methods.
|
||
|
||
This R package was created for academic research by PhD students of the Faculty of Medical Sciences of the [University of Groningen](https://www.rug.nl) and the Medical Microbiology & Infection Prevention (MMBI) department of the [University Medical Center Groningen (UMCG)](https://www.umcg.nl).
|
||
|
||
:arrow_forward: Download it with `install.packages("AMR")` or see below for other possibilities.
|
||
|
||
## Authors
|
||
|
||
- [Berends MS](https://github.com/msberends)<sup>1,2</sup>, PhD Student
|
||
- [Luz CF](https://github.com/ceefluz)<sup>1</sup>, PhD Student
|
||
- [Hassing EEA](https://github.com/erwinhassing)<sup>2</sup>, Data Analyst (contributor)
|
||
|
||
<sup>1</sup> Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
|
||
|
||
<sup>2</sup> Certe Medical Diagnostics & Advice, Groningen, the Netherlands
|
||
|
||
<a href="https://www.rug.nl"><img src="man/figures/logo_rug.png" height="60px"></a>
|
||
<a href="https://www.umcg.nl"><img src="man/figures/logo_umcg.png" height="60px"></a>
|
||
<a href="https://www.certe.nl"><img src="man/figures/logo_certe.png" height="60px"></a>
|
||
<a href="http://www.eurhealth-1health.eu"><img src="man/figures/logo_eh1h.png" height="60px"></a>
|
||
<a href="http://www.eurhealth-1health.eu"><img src="man/figures/logo_interreg.png" height="60px"></a>
|
||
|
||
## Why this package?
|
||
This R package contains functions to make **microbiological, epidemiological data analysis easier**. It allows the use of some new classes to work with MIC values and antimicrobial interpretations (i.e. values S, I and R).
|
||
|
||
With `AMR` you can also:
|
||
* Conduct AMR analysis with the `rsi` function, that can also be used with the `dplyr` package (e.g. in conjunction with `summarise`) to calculate the resistance percentages (and even co-resistance) of different antibiotic columns of a table
|
||
* Predict antimicrobial resistance for the nextcoming years with the `rsi_predict` function
|
||
* Apply [EUCAST rules to isolates](http://www.eucast.org/expert_rules_and_intrinsic_resistance/) with the `EUCAST_rules` function
|
||
* Identify first isolates of every patient [using guidelines from the CLSI](https://clsi.org/standards/products/microbiology/documents/m39/) (Clinical and Laboratory Standards Institute) with the `first_isolate` function
|
||
* Get antimicrobial ATC properties from the WHO Collaborating Centre for Drug Statistics Methodology ([WHOCC](https://www.whocc.no/atc_ddd_methodology/who_collaborating_centre/)), to be able to:
|
||
* Translate antibiotic codes (like *AMOX*), official names (like *amoxicillin*) and even trade names (like *Amoxil* or *Trimox*) to an [ATC code](https://www.whocc.no/atc_ddd_index/?code=J01CA04&showdescription=no) (like *J01CA04*) and vice versa with the `abname` function
|
||
* Get the latest antibiotic properties like hierarchic groups and [defined daily dose](https://en.wikipedia.org/wiki/Defined_daily_dose) (DDD) with units and administration form from the WHOCC website with the `atc_property` function
|
||
* Conduct descriptive statistics: calculate kurtosis, skewness and create frequency tables
|
||
|
||
And it contains:
|
||
* A recent data set with ~2500 human pathogenic microorganisms, including family, genus, species, gram stain and aerobic/anaerobic
|
||
* A recent data set with all antibiotics as defined by the [WHOCC](https://www.whocc.no/atc_ddd_methodology/who_collaborating_centre/), including ATC code, official name and DDD's
|
||
* An example data set `septic_patients`, consisting of 2000 blood culture isolates from anonymised septic patients between 2001 and 2017.
|
||
|
||
With the `MDRO` function (abbreviation of Multi Drug Resistant Organisms), you can check your isolates for exceptional resistance with country-specific guidelines or EUCAST rules. Currently guidelines for Germany and the Netherlands are supported. Please suggest addition of your own country here: [https://github.com/msberends/AMR/issues/new](https://github.com/msberends/AMR/issues/new?title=New%20guideline%20for%20MDRO&body=%3C--%20Please%20add%20your%20country%20code,%20guideline%20name,%20version%20and%20source%20below%20and%20remove%20this%20line--%3E).
|
||
|
||
#### Read all changes and new functions in [NEWS.md](NEWS.md).
|
||
|
||
## How to get it?
|
||
This package is available on CRAN and also here on GitHub.
|
||
|
||
### From CRAN (recommended)
|
||
Latest released version on CRAN:
|
||
|
||
[![CRAN_Badge](https://img.shields.io/cran/v/AMR.svg?label=CRAN&colorB=3679BC)](http://cran.r-project.org/package=AMR)
|
||
|
||
Downloads via RStudio CRAN server (downloads by all other CRAN mirrors **not** measured, including the official https://cran.r-project.org):
|
||
|
||
[![CRAN_Downloads](https://cranlogs.r-pkg.org/badges/grand-total/AMR)](http://cran.r-project.org/package=AMR)
|
||
[![CRAN_Downloads](https://cranlogs.r-pkg.org/badges/AMR)](https://cranlogs.r-pkg.org/downloads/daily/last-month/AMR)
|
||
|
||
- <img src="http://www.rstudio.com/favicon.ico" alt="RStudio favicon" height="20px"> In [RStudio](http://www.rstudio.com) (recommended):
|
||
- Click on `Tools` and then `Install Packages...`
|
||
- Type in `AMR` and press <kbd>Install</kbd>
|
||
|
||
- <img src="https://cran.r-project.org/favicon.ico" alt="R favicon" height="20px"> In R directly:
|
||
- `install.packages("AMR")`
|
||
|
||
- <img src="https://exploratory.io/favicon.ico" alt="Exploratory favicon" height="20px"> In [Exploratory.io](https://exploratory.io):
|
||
- (Exploratory.io costs $40/month but the somewhat limited Community Plan is free for students and teachers, [click here to enroll](https://exploratory.io/plan?plan=Community))
|
||
- Start the software and log in
|
||
- Click on your username at the right hand side top
|
||
- Click on `R Packages`
|
||
- Click on the `Install` tab
|
||
- Type in `AMR` and press <kbd>Install</kbd>
|
||
- Once it’s installed it will show up in the `User Packages` section under the `Packages` tab.
|
||
|
||
### From GitHub (latest development version)
|
||
[![Travis_Build](https://travis-ci.org/msberends/AMR.svg?branch=master)](https://travis-ci.org/msberends/AMR)
|
||
[![Since_Release](https://img.shields.io/github/commits-since/msberends/AMR/latest.svg?colorB=3679BC)](https://github.com/msberends/AMR/commits/master)
|
||
[![Last_Commit](https://img.shields.io/github/last-commit/msberends/AMR.svg)](https://github.com/msberends/AMR/commits/master)
|
||
[![Code_Coverage](https://codecov.io/gh/msberends/AMR/branch/master/graph/badge.svg)](https://codecov.io/gh/msberends/AMR)
|
||
|
||
```r
|
||
install.packages("devtools")
|
||
devtools::install_github("msberends/AMR")
|
||
```
|
||
|
||
## How to use it?
|
||
```r
|
||
# Call it with:
|
||
library(AMR)
|
||
|
||
# For a list of functions:
|
||
help(package = "AMR")
|
||
```
|
||
### Overwrite/force resistance based on EUCAST rules
|
||
This is also called *interpretive reading*.
|
||
```r
|
||
before <- data.frame(bactid = c("STAAUR", # Staphylococcus aureus
|
||
"ENCFAE", # Enterococcus faecalis
|
||
"ESCCOL", # Escherichia coli
|
||
"KLEPNE", # Klebsiella pneumoniae
|
||
"PSEAER"), # Pseudomonas aeruginosa
|
||
vanc = "-", # Vancomycin
|
||
amox = "-", # Amoxicillin
|
||
coli = "-", # Colistin
|
||
cfta = "-", # Ceftazidime
|
||
cfur = "-", # Cefuroxime
|
||
stringsAsFactors = FALSE)
|
||
before
|
||
# bactid vanc amox coli cfta cfur
|
||
# 1 STAAUR - - - - -
|
||
# 2 ENCFAE - - - - -
|
||
# 3 ESCCOL - - - - -
|
||
# 4 KLEPNE - - - - -
|
||
# 5 PSEAER - - - - -
|
||
|
||
# Now apply those rules; just need a column with bacteria ID's and antibiotic results:
|
||
after <- EUCAST_rules(before)
|
||
after
|
||
# bactid vanc amox coli cfta cfur
|
||
# 1 STAAUR - - R R -
|
||
# 2 ENCFAE - - R R R
|
||
# 3 ESCCOL R - - - -
|
||
# 4 KLEPNE R R - - -
|
||
# 5 PSEAER R R - - R
|
||
```
|
||
|
||
### Frequency tables
|
||
Base R lacks a simple function to create frequency tables. We created such a function that works with almost all data types: `freq` (or `frequency_tbl`). It can be used in two ways:
|
||
```r
|
||
# Like base R:
|
||
freq(mydata$myvariable)
|
||
|
||
# And like tidyverse:
|
||
mydata %>% freq(myvariable)
|
||
```
|
||
|
||
Factors sort on item by default:
|
||
```r
|
||
septic_patients %>% freq(hospital_id)
|
||
# Frequency table of `hospital_id`
|
||
# Class: factor
|
||
# Length: 2000 (of which NA: 0 = 0.0%)
|
||
# Unique: 5
|
||
#
|
||
# Item Count Percent Cum. Count Cum. Percent (Factor Level)
|
||
# --- ----- ------ -------- ----------- ------------- ---------------
|
||
# 1 A 233 11.7% 233 11.7% 1
|
||
# 2 B 583 29.1% 816 40.8% 2
|
||
# 3 C 221 11.1% 1037 51.8% 3
|
||
# 4 D 650 32.5% 1687 84.4% 4
|
||
# 5 E 313 15.7% 2000 100.0% 5
|
||
```
|
||
|
||
This can be changed with the `sort.count` parameter:
|
||
```r
|
||
septic_patients %>% freq(hospital_id, sort.count = TRUE)
|
||
# Frequency table of `hospital_id`
|
||
# Class: factor
|
||
# Length: 2000 (of which NA: 0 = 0.0%)
|
||
# Unique: 5
|
||
#
|
||
# Item Count Percent Cum. Count Cum. Percent (Factor Level)
|
||
# --- ----- ------ -------- ----------- ------------- ---------------
|
||
# 1 D 650 32.5% 650 32.5% 4
|
||
# 2 B 583 29.1% 1233 61.7% 2
|
||
# 3 E 313 15.7% 1546 77.3% 5
|
||
# 4 A 233 11.7% 1779 88.9% 1
|
||
# 5 C 221 11.1% 2000 100.0% 3
|
||
```
|
||
|
||
All other types, like numbers, characters and dates, sort on count by default:
|
||
```r
|
||
septic_patients %>% freq(date)
|
||
# Frequency table of `date`
|
||
# Class: Date
|
||
# Length: 2000 (of which NA: 0 = 0.0%)
|
||
# Unique: 1662
|
||
#
|
||
# Oldest: 2 January 2001
|
||
# Newest: 18 October 2017 (+6133)
|
||
# Median: 6 December 2009 (~53%)
|
||
#
|
||
# Item Count Percent Cum. Count Cum. Percent
|
||
# --- ----------- ------ -------- ----------- -------------
|
||
# 1 2008-12-24 5 0.2% 5 0.2%
|
||
# 2 2010-12-10 4 0.2% 9 0.4%
|
||
# 3 2011-03-03 4 0.2% 13 0.6%
|
||
# 4 2013-06-24 4 0.2% 17 0.8%
|
||
# 5 2017-09-01 4 0.2% 21 1.1%
|
||
# 6 2002-09-02 3 0.2% 24 1.2%
|
||
# 7 2003-10-14 3 0.2% 27 1.4%
|
||
# 8 2004-06-25 3 0.2% 30 1.5%
|
||
# 9 2004-06-27 3 0.2% 33 1.7%
|
||
# 10 2004-10-29 3 0.2% 36 1.8%
|
||
# 11 2005-09-27 3 0.2% 39 2.0%
|
||
# 12 2006-08-01 3 0.2% 42 2.1%
|
||
# 13 2006-10-10 3 0.2% 45 2.2%
|
||
# 14 2007-11-16 3 0.2% 48 2.4%
|
||
# 15 2008-03-09 3 0.2% 51 2.5%
|
||
# [ reached getOption("max.print.freq") -- omitted 1647 entries, n = 1949 (97.5%) ]
|
||
```
|
||
For numeric values, some extra descriptive statistics will be calculated:
|
||
```r
|
||
freq(runif(n = 10, min = 1, max = 5))
|
||
# Frequency table
|
||
# Class: numeric
|
||
# Length: 10 (of which NA: 0 = 0.0%)
|
||
# Unique: 10
|
||
#
|
||
# Mean: 2.9
|
||
# Std. dev.: 1.3 (CV: 0.43, MAD: 1.5)
|
||
# Five-Num: 1.5 | 1.7 | 2.6 | 4.0 | 4.7 (IQR: 2.3, CQV: 0.4)
|
||
# Outliers: 0
|
||
#
|
||
# Item Count Percent Cum. Count Cum. Percent
|
||
# --------- ------ -------- ----------- -------------
|
||
# 1.132033 1 10.0% 1 10.0%
|
||
# 2.226903 1 10.0% 2 20.0%
|
||
# 2.280779 1 10.0% 3 30.0%
|
||
# 2.640898 1 10.0% 4 40.0%
|
||
# 2.913462 1 10.0% 5 50.0%
|
||
# 3.364201 1 10.0% 6 60.0%
|
||
# 3.771975 1 10.0% 7 70.0%
|
||
# 3.802861 1 10.0% 8 80.0%
|
||
# 3.803547 1 10.0% 9 90.0%
|
||
# 3.985691 1 10.0% 10 100.0%
|
||
#
|
||
# Warning message:
|
||
# All observations are unique.
|
||
```
|
||
Learn more about this function with:
|
||
```r
|
||
?freq
|
||
```
|
||
|
||
### New classes
|
||
This package contains two new S3 classes: `mic` for MIC values (e.g. from Vitek or Phoenix) and `rsi` for antimicrobial drug interpretations (i.e. S, I and R). Both are actually ordered factors under the hood (an MIC of `2` being higher than `<=1` but lower than `>=32`, and for class `rsi` factors are ordered as `S < I < R`).
|
||
Both classes have extensions for existing generic functions like `print`, `summary` and `plot`.
|
||
|
||
```r
|
||
# Transform values to new classes
|
||
mic_data <- as.mic(c(">=32", "1.0", "8", "<=0.128", "8", "16", "16"))
|
||
rsi_data <- as.rsi(c(rep("S", 474), rep("I", 36), rep("R", 370)))
|
||
```
|
||
These functions also try to coerce valid values.
|
||
|
||
Quick overviews when just printing objects:
|
||
```r
|
||
mic_data
|
||
# Class 'mic': 7 isolates
|
||
#
|
||
# <NA> 0
|
||
#
|
||
# <=0.128 1 8 16 >=32
|
||
# 1 1 2 2 1
|
||
|
||
rsi_data
|
||
# Class 'rsi': 880 isolates
|
||
#
|
||
# <NA>: 0
|
||
# Sum of S: 474
|
||
# Sum of IR: 406
|
||
# - Sum of R: 370
|
||
# - Sum of I: 36
|
||
#
|
||
# %S %IR %I %R
|
||
# 53.9 46.1 4.1 42.0
|
||
```
|
||
|
||
A plot of `rsi_data`:
|
||
```r
|
||
plot(rsi_data)
|
||
```
|
||
|
||
![example1](man/figures/rsi_example.png)
|
||
|
||
A plot of `mic_data` (defaults to bar plot):
|
||
```r
|
||
plot(mic_data)
|
||
```
|
||
|
||
![example2](man/figures/mic_example.png)
|
||
|
||
Other epidemiological functions:
|
||
|
||
```r
|
||
# Determine key antibiotic based on bacteria ID
|
||
key_antibiotics(...)
|
||
|
||
# Selection of first isolates of any patient
|
||
first_isolate(...)
|
||
|
||
# Calculate resistance levels of antibiotics, can be used with `summarise` (dplyr)
|
||
rsi(...)
|
||
# Predict resistance levels of antibiotics
|
||
rsi_predict(...)
|
||
|
||
# Get name of antibiotic by ATC code
|
||
abname(...)
|
||
abname("J01CR02", from = "atc", to = "umcg") # "AMCL"
|
||
```
|
||
|
||
### Databases included in package
|
||
Datasets to work with antibiotics and bacteria properties.
|
||
```r
|
||
# Dataset with 2000 random blood culture isolates from anonymised
|
||
# septic patients between 2001 and 2017 in 5 Dutch hospitals
|
||
septic_patients # A tibble: 4,000 x 47
|
||
|
||
# Dataset with ATC antibiotics codes, official names, trade names
|
||
# and DDD's (oral and parenteral)
|
||
antibiotics # A tibble: 420 x 18
|
||
|
||
# Dataset with bacteria codes and properties like gram stain and
|
||
# aerobic/anaerobic
|
||
microorganisms # A tibble: 2,453 x 12
|
||
```
|
||
|
||
## Copyright
|
||
[![License](https://img.shields.io/github/license/msberends/AMR.svg?colorB=3679BC)](https://github.com/msberends/AMR/blob/master/LICENSE)
|
||
|
||
This R package is licensed under the [GNU General Public License (GPL) v2.0](https://github.com/msberends/AMR/blob/master/LICENSE). In a nutshell, this means that this package:
|
||
|
||
- May be used for commercial purposes
|
||
|
||
- May be used for private purposes
|
||
|
||
- May **not** be used for patent purposes
|
||
|
||
- May be modified, although:
|
||
|
||
- Modifications **must** be released under the same license when distributing the package
|
||
- Changes made to the code **must** be documented
|
||
|
||
- May be distributed, although:
|
||
|
||
- Source code **must** be made available when the package is distributed
|
||
- A copy of the license and copyright notice **must** be included with the package.
|
||
|
||
- Comes with a LIMITATION of liability
|
||
|
||
- Comes with NO warranty
|