114 lines
4.9 KiB
Plaintext
114 lines
4.9 KiB
Plaintext
|
/*************************************************************************
|
||
|
*
|
||
|
* This file is part of ACT dataflow neuro library
|
||
|
*
|
||
|
* Copyright (c) 2022 University of Groningen - Ole Richter
|
||
|
* Copyright (c) 2022 University of Groningen - Michele Mastella
|
||
|
* Copyright (c) 2022 University of Groningen - Hugh Greatorex
|
||
|
* Copyright (c) 2022 University of Groningen - Madison Cotteret
|
||
|
*
|
||
|
*
|
||
|
* This source describes Open Hardware and is licensed under the CERN-OHL-W v2 or later
|
||
|
*
|
||
|
* You may redistribute and modify this documentation and make products
|
||
|
* using it under the terms of the CERN-OHL-W v2 (https:/cern.ch/cern-ohl).
|
||
|
* This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED
|
||
|
* WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY
|
||
|
* AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-W v2
|
||
|
* for applicable conditions.
|
||
|
*
|
||
|
* Source location: https://git.web.rug.nl/bics/actlib_dataflow_neuro
|
||
|
*
|
||
|
* As per CERN-OHL-W v2 section 4.1, should You produce hardware based on
|
||
|
* these sources, You must maintain the Source Location visible in its
|
||
|
* documentation.
|
||
|
*
|
||
|
**************************************************************************
|
||
|
*/
|
||
|
*
|
||
|
|
||
|
import "../../dataflow_neuro/cell_lib_async.act";
|
||
|
import "../../dataflow_neuro/cell_lib_std.act";
|
||
|
import "../../dataflow_neuro/treegates.act";
|
||
|
import "../../dataflow_neuro/primitives.act";
|
||
|
import "../../dataflow_neuro/coders.act";
|
||
|
// import tmpl::dataflow_neuro;
|
||
|
// import tmpl::dataflow_neuro;
|
||
|
import std::channel;
|
||
|
open std::channel;
|
||
|
|
||
|
namespace tmpl {
|
||
|
namespace dataflow_neuro {
|
||
|
// Circuit for storing, reading and writing registers using AER
|
||
|
// The block has the parameters:
|
||
|
// log_nw -> log2(number of words), parameters you can store
|
||
|
// wl -> word length, length of each word
|
||
|
// N_dly_cfg -> the number of config bits in the ACK delay line
|
||
|
// The block has the pins:
|
||
|
// in -> input data,
|
||
|
// - the first bit is write/read_B
|
||
|
// - the next log_nw bits describe the location,
|
||
|
// - the last wl the word to write
|
||
|
// data -> the data saved in the flip flop, sized wl x nw
|
||
|
export template<pint log_nw,wl,N_dly_cfg>
|
||
|
defproc register_rw (avMx1of2<1+log_nw+wl> in, d1of<wl> data[2<<log_nw] ){
|
||
|
bool _in_v_temp,_in_a_temp,_clock_temp,_clock;
|
||
|
//Validation of the input
|
||
|
vtree val_input(.in = in,.out = _in_v_temp, .supply = supply);
|
||
|
sigbuf_1output<4> val_input_X(.in = _in_v_temp,.out = in.v,.supply = supply);
|
||
|
in.v = _in_v_temp;
|
||
|
// Generation of the clock pulse
|
||
|
delayprog<N_dly_cfg> dly(.in = _in_v_temp, .s = _clock_temp, .supply = supply);
|
||
|
sigbuf_1output<4> val_input_X(.in = _clock_temp,.out = _clock,.supply = supply);
|
||
|
// Sending back to the ackowledge
|
||
|
delayprog<N_dly_cfg> dly(.in = _clock, .s = _in_a_temp, .supply = supply);
|
||
|
sigbuf_1output<4> val_input_X(.in = _in_a_temp,.out = in.a,.supply = supply);
|
||
|
//Reset Buffers
|
||
|
bool _reset_BX,_reset_BXX[_nw*w];
|
||
|
BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
||
|
sigbuf<_nw*wl> reset_bufarray(.in=_reset_BX, .out=_reset_BXX,.vdd=supply.vdd,.vss=supply.vss);
|
||
|
// Creating the different flip flop arrays
|
||
|
bool _nw = 2<<log_nw;
|
||
|
bool _word_idx = 0;
|
||
|
bool _out_encoder[_nw],_clock_word_temp[_nw],_clock_word[_nw];
|
||
|
andtree<log_nw> atree[_nw];
|
||
|
AND2_X1 and_encoder[_nw]
|
||
|
sigbuf<wl> clock_buffer;
|
||
|
DFQ_R_X1 ff[_nw*wl];
|
||
|
(k:_nw:atree_x[k].supply = supply;)
|
||
|
(_word_idx:_nw:
|
||
|
// Decoding the bit pattern to understand which word we are looking at
|
||
|
(pin_idx:log_nw:
|
||
|
bitval = (_word_idx & ( 1 << pin_idx )) >> pin_idx; // Get binary digit of integer i, column j
|
||
|
[bitval = 1 ->
|
||
|
atree[_word_idx].in[pin_idx] = in.d.d[pin_idx+1].t;
|
||
|
[] bitval = 0 ->
|
||
|
atree[_word_idx].in[pin_idx] = in.d.d[pin_idx+1].f;
|
||
|
[]bitval >= 2 -> {false : "fuck"};
|
||
|
]
|
||
|
)
|
||
|
// Activating the fake clock for the right word
|
||
|
atree_x[_word_idx].out = _out_encoder[_word_idx];
|
||
|
and_encoder[_word_idx].a = _out_encoder[_word_idx];
|
||
|
and_encoder[_word_idx].b = _clock
|
||
|
and_encoder[_word_idx].y = _clock_word_temp[_word_idx];
|
||
|
and_encoder[_word_idx].vdd = supply.vdd;
|
||
|
and_encoder[_word_idx].vss = supply.vss;
|
||
|
clock_buffer[_word_idx].in = _clock_word_temp[_word_idx];
|
||
|
clock_buffer[_word_idx].out = _clock_word[_word_idx];
|
||
|
clock_buffer[_word_idx].vdd = supply.vdd;
|
||
|
clock_buffer[_word_idx].vss = supply.vss;
|
||
|
// Describing all the FF and their connection
|
||
|
(_bit_idx:wl:
|
||
|
ff[_bit_idx*(1+_word_idx)].clk = _clock_word[_word_idx];
|
||
|
ff[_bit_idx*(1+_word_idx)].d = in.d.d[_bit_idx+1+log_nw];
|
||
|
ff[_bit_idx*(1+_word_idx)].q = data[_word_idx].d[_bit_idx];
|
||
|
ff[_bit_idx*(1+_word_idx)].reset_B = reset_BXX[_bit_idx*(1+_word_idx)];
|
||
|
ff[_bit_idx*(1+_word_idx)].vdd = supply.vdd;
|
||
|
ff[_bit_idx*(1+_word_idx)].vss = supply.vss;
|
||
|
)
|
||
|
)
|
||
|
}
|
||
|
}}
|
||
|
|