created version of tdc_g without register read functionality

This commit is contained in:
alexmadison
2022-07-06 15:35:20 +02:00
parent 2ddbeac978
commit 194a7ad196
4 changed files with 39276 additions and 131 deletions

View File

@@ -41,137 +41,6 @@ namespace tmpl {
namespace dataflow_neuro {
/**
* Buffer for use in an A-cell register.
* Basically the same as a normal buffer, except that when out.v goes high,
* in.a goes high too.
* Also, in.a does not wait for out.v to go low to go to low.
* Means have a buffer that completes its Right handshake as soon as out data is valid.
*/
// export template<pint N>
// defproc buffer_register(avMx1of2<N> in; Mx1of2<N> out; bool? out_v, flush,
// reset_B; power supply) {
// //control
// bool _en, _reset_BX[N];
// bool _in_aB;
// bool _reset;
// bool _resetX[N];
// // Reset sigs
// INV_X1 reset_inv(.a = reset_B, .y = _reset, .vdd = supply.vdd, .vss = supply.vss);
// sigbuf<N> reset_sb(.in = _reset, .out = _resetX, .supply = supply);
// sigbuf<N> resetB_sb(.in=reset_B, .out=_reset_BX, .supply = supply);
// A_2C1N_R_X1 inack_ctl(.c1=_in_aB,.c2=in.v,.n1=out_v,.y=_in_aB,
// .pr_B=_reset_BX[0],.sr_B=_reset_BX[0],.vdd=supply.vdd,.vss=supply.vss);
// INV_X1 inack_inv(.a = _in_aB, .y = in.a, .vdd = supply.vdd, .vss = supply.vss);
// // Flush sigs
// bool _flushB, _flushBX[N*2];
// INV_X1 flush_inv(.a = flush, .y = _flushB);
// sigbuf<N*2> flushB_sb(.in = _flushB, .out = _flushBX, .supply = supply);
// _en = _in_aB;
// //validity
// bool _in_v;
// vtree<N> vc(.in=in.d,.out=_in_v,.supply=supply);
// BUF_X4 in_v_buf(.a=_in_v, .y=in.v,.vdd=supply.vdd,.vss=supply.vss);
// //function
// bool _out_a_BX_t[N],_out_a_BX_f[N],_out_a_B;
// A_1C2N_SB_X4 f_buf_func[N];
// A_1C2N_RB_X4 t_buf_func[N];
// sigbuf<N*2> en_buf(.in=_en, .supply=supply);
// (i:N:
// f_buf_func[i].y=out.d[i].f;
// t_buf_func[i].y=out.d[i].t;
// f_buf_func[i].c1=_flushBX[i];
// t_buf_func[i].c1=_flushBX[i+N];
// f_buf_func[i].n2=en_buf.out[i];
// t_buf_func[i].n2=en_buf.out[i+N];
// f_buf_func[i].n1=in.d.d[i].f;
// t_buf_func[i].n1=in.d.d[i].t;
// f_buf_func[i].vdd=supply.vdd;
// t_buf_func[i].vdd=supply.vdd;
// f_buf_func[i].vss=supply.vss;
// t_buf_func[i].vss=supply.vss;
// f_buf_func[i].pr = _resetX[i];
// f_buf_func[i].sr = _resetX[i];
// t_buf_func[i].pr_B = _reset_BX[i];
// t_buf_func[i].sr_B = _reset_BX[i];
// )
// }
/**
* A single register made out of A cells.
* MSB is whether to read or write.
* Currently only handles writing.
*/
// export template<pint N>
// defproc register_acells(avMx1of2<N+1> in; Mx1of2<N> out;
// bool? reset_B; power supply) {
// bool _en2;
// bool _w;
// bool _out_v, _out_vB;
// bool _flush, _flushB;
// _w = in.d.d[N].t;
// // Buffer
// buffer_register<N> buf(.out = out, .out_v = _out_v, .flush = _flush,
// .supply = supply, .reset_B = reset_B);
// buf.in.v = in.v;
// // In ack stuff
// INV_X1 in_ack_inv(.a = buf.in.a, .vdd = supply.vdd, .vss = supply.vss);
// // To stop in ack going low before en2 has been reset.
// A_1C1N_X1 in_ack_safety(.c1 = in_ack_inv.y, .n1 = _en2, .y = in.a,
// .vdd = supply.vdd, .vss = supply.vss);
// // Out valid tree
// vtree<N> out_valid(.in = buf.out, .out = _out_v, .supply = supply);
// INV_X2 out_val_inv(.a = _out_v, .y = _out_vB, .vdd = supply.vdd, .vss=supply.vss);
// // Control
// A_1C1P2N_RB_X1 A_flush(.c1 = _en2, .n1 = _out_v, .n2 = _w, .p1 = _flushB, .y = _flush,
// .vdd = supply.vdd, .vss = supply.vss, .sr_B = reset_B, .pr_B = reset_B);
// INV_X2 flush_inv(.a = _flush, .y = _flushB, .vdd = supply.vdd, .vss = supply.vss);
// A_1C2N_R_X1 A_en2(.c1 = _w, .n1 = _en2, .n2 = _out_vB, .y = _en2,
// .pr_B = reset_B, .sr_B = reset_B);
// // Pass to let data into the buffer
// NOR2_X1 pass(.a = _en2, .b = _flush, .vss = supply.vss, .vdd = supply.vdd);
// sigbuf<N*2> passX(.in = pass.y, .supply = supply);
// AND2_X1 gandalf_t[N];
// AND2_X1 gandalf_f[N];
// (i:0..N-1:
// gandalf_t[i].a = in.d.d[i].t;
// gandalf_f[i].a = in.d.d[i].f;
// gandalf_t[i].b = passX.out[i];
// gandalf_f[i].b = passX.out[i+N];
// gandalf_t[i].y = buf.in.d.d[i].t;
// gandalf_f[i].y = buf.in.d.d[i].f;
// gandalf_t[i].vdd = supply.vdd;
// gandalf_f[i].vdd = supply.vdd;
// gandalf_t[i].vss = supply.vss;
// gandalf_f[i].vss = supply.vss;
// )
// }
/**
* A single register made out of A cells.
* MSB is whether to read or write.
@@ -407,5 +276,75 @@ A_2C_B_X1 addr_read_f[NcA];
/**
* Array of registers made out of A-cells.
* !!!Registers ONLY have write functionality!!!
* params:
* NcW: number of bits in Words to be stored in buffers
* NcA: number of bits in Address
* M: number of registers. M = 2^Nc_addr would be a natural choice.
* Input packets should be
* LSB [-addr-][-word-] MSB
*/
export template<pint NcA, NcW, M>
defproc register_w_array(avMx1of2<NcA + NcW> in; Mx1of2<NcW> data[M]; avMx1of2<NcA+NcW> out;
bool? reset_B; power supply) {
// Input valid tree
vtree<NcA + NcW> input_valid(.in = in.d, .out = in.v,
.supply = supply);
// Address decoder
decoder_dualrail<NcA, M> decoder(.supply = supply);
(i:NcA:
decoder.in.d[i] = in.d.d[i];
)
// OrTree over acks from all registers
ortree<M> ack_ortree(.supply = supply);
bool _write_ack;
// C element handling in ack
A_2C_B_X1 in_ack_Cel(.c1 = ack_ortree.out, .c2 = input_valid.out, .y = _write_ack,
.vss = supply.vss, .vdd = supply.vdd);
A_2C_B_X1 ack_safety(.c1 = _write_ack, .c2 = in.v, .y = in.a);
// Registers
register_acells_improved<NcW> registers[M];
TIELO_X1 tielow_writebit_f[M];
(i:M:
// Connect each register to word inputs.
(j:NcW:
registers[i].in.d.d[j] = in.d.d[j + NcA];
)
// Connect the (selected) write bit
registers[i].in.d.d[NcW].t = decoder.out[i];
tielow_writebit_f[i].vdd = supply.vdd;
tielow_writebit_f[i].vss = supply.vss;
registers[i].in.d.d[NcW].f = tielow_writebit_f[i].y;
// Connect to ack ortree
registers[i].in.a = ack_ortree.in[i];
// Connect outputs
data[i] = registers[i].out;
registers[i].supply = supply;
registers[i].reset_B = reset_B;
)
}
}}