1067 lines
32 KiB
Plaintext
1067 lines
32 KiB
Plaintext
/*************************************************************************
|
|
*
|
|
* This file is part of ACT dataflow neuro library
|
|
*
|
|
* Copyright (c) 2022 University of Groningen - Ole Richter
|
|
* Copyright (c) 2022 University of Groningen - Michele Mastella
|
|
* Copyright (c) 2022 University of Groningen - Hugh Greatorex
|
|
* Copyright (c) 2022 University of Groningen - Madison Cotteret
|
|
*
|
|
*
|
|
* This source describes Open Hardware and is licensed under the CERN-OHL-W v2 or later
|
|
*
|
|
* You may redistribute and modify this documentation and make products
|
|
* using it under the terms of the CERN-OHL-W v2 (https:/cern.ch/cern-ohl).
|
|
* This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED
|
|
* WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-W v2
|
|
* for applicable conditions.
|
|
*
|
|
* Source location: https://git.web.rug.nl/bics/actlib_dataflow_neuro
|
|
*
|
|
* As per CERN-OHL-W v2 section 4.1, should You produce hardware based on
|
|
* these sources, You must maintain the Source Location visible in its
|
|
* documentation.
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
import "../../dataflow_neuro/cell_lib_async.act";
|
|
import "../../dataflow_neuro/cell_lib_std.act";
|
|
import "../../dataflow_neuro/treegates.act";
|
|
import "../../dataflow_neuro/primitives.act";
|
|
// import tmpl::dataflow_neuro;
|
|
// import tmpl::dataflow_neuro;
|
|
import std::channel;
|
|
open std::channel;
|
|
|
|
// import std::func;
|
|
open std;
|
|
|
|
import std::data;
|
|
open std::data;
|
|
|
|
|
|
// import dev::channel;
|
|
// open dev::channel;
|
|
|
|
|
|
namespace tmpl {
|
|
namespace dataflow_neuro {
|
|
|
|
/**
|
|
* Dualrail decoder.
|
|
* Nc is the number of dualrail input channels.
|
|
* Then builds N output AND gates, connecting to the right input wires.
|
|
*/
|
|
export template<pint Nc, N>
|
|
defproc decoder_dualrail (Mx1of2<Nc> in; bool? out[N]; power supply) {
|
|
// signal buffers
|
|
sigbuf<N> in_tX[Nc];
|
|
sigbuf<N> in_fX[Nc];
|
|
(i:Nc:
|
|
in_tX[i].supply = supply;
|
|
in_tX[i].in = in.d[i].t;
|
|
|
|
in_fX[i].supply = supply;
|
|
in_fX[i].in = in.d[i].f;
|
|
)
|
|
|
|
// AND trees
|
|
pint bitval;
|
|
andtree<Nc> atree[N];
|
|
(k:0..N-1:atree[k].supply = supply;)
|
|
(i:0..N-1:
|
|
(j:0..Nc-1:
|
|
bitval = (i & ( 1 << j )) >> j; // Get binary digit of integer i, column j
|
|
[bitval = 1 ->
|
|
atree[i].in[j] = in_tX[j].out[i];
|
|
// atree[i].in[j] = addr_buf.out.d.d[j].t;
|
|
[]bitval = 0 ->
|
|
atree[i].in[j] = in_fX[j].out[i];
|
|
// atree[i].in[j] = addr_buf.out.d.d[j].f;
|
|
[]bitval >= 2 -> {false : "fuck"};
|
|
]
|
|
atree[i].out = out[i];
|
|
)
|
|
)
|
|
}
|
|
|
|
/**
|
|
* Dualrail decoder with buffered outputs.
|
|
* Be careful of out[] indexing.
|
|
*/
|
|
export template<pint Nc, N, OUT_STRENGTH>
|
|
defproc decoder_dualrail_x(Mx1of2<Nc> in; bool? out[N]; power supply) {
|
|
decoder_dualrail<Nc, N> decoder(.in = in, .supply = supply);
|
|
sigbuf<OUT_STRENGTH> sb[N];
|
|
(i:N:
|
|
sb[i].in = decoder.out[i];
|
|
sb[i].supply = supply;
|
|
sb[i].out[0] = out[i];
|
|
// (j:OUT_STRENGTH:
|
|
// sb[i].out[j] = out[j + i*OUT_STRENGTH];
|
|
// )
|
|
)
|
|
}
|
|
|
|
/**
|
|
* Dualrail decoder with on/off switch.
|
|
* Outputs are NOT buffered.
|
|
*/
|
|
export template<pint Nc, N>
|
|
defproc decoder_dualrail_en(Mx1of2<Nc> in; bool? en, out[N]; power supply) {
|
|
decoder_dualrail<Nc, N> decoder(.in = in, .supply = supply);
|
|
|
|
sigbuf<N> sb_en(.in = en, .supply = supply);
|
|
AND2_X1 en_ands[N];
|
|
(i:N:
|
|
en_ands[i].a = decoder.out[i];
|
|
en_ands[i].b = sb_en.out[i];
|
|
|
|
en_ands[i].vdd = supply.vdd;
|
|
en_ands[i].vss = supply.vss;
|
|
|
|
en_ands[i].y = out[i];
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* 2D decoder which uses a configurable delay from the VCtrees to buffer ack.
|
|
* Nx is the x size of the decoder array
|
|
* NxC is the number of wires in the x channel.
|
|
* Thus NxC should be something like NxC = ceil(log2(Nx))
|
|
* but my guess is that we can't do logs...
|
|
* N_dly_cfg is the number of config bits in the ACK delay line,
|
|
* with all bits high corresponding to 2**N_dly_cfg -1 DLY4_X1 cells.
|
|
*/
|
|
export template<pint NxC, NyC, Nx, Ny, N_dly_cfg>
|
|
defproc decoder_2d_dly (avMx1of2<NxC+NyC> in; bool? outx[Nx], outy[Ny],
|
|
dly_cfg[N_dly_cfg], reset_B; power supply) {
|
|
|
|
// Buffer to recieve concat(x,y) address packet
|
|
buffer<NxC+NyC> addr_buf(.in = in, .reset_B = reset_B, .supply = supply);
|
|
|
|
// Validity trees
|
|
vtree<NxC> vtree_x (.supply = supply);
|
|
vtree<NyC> vtree_y (.supply = supply);
|
|
(i:0..NxC-1:vtree_x.in.d[i].t = addr_buf.out.d.d[i].t;)
|
|
(i:0..NxC-1:vtree_x.in.d[i].f = addr_buf.out.d.d[i].f;)
|
|
(i:0..NyC-1:vtree_y.in.d[i].t = addr_buf.out.d.d[i+NxC].t;)
|
|
(i:0..NyC-1:vtree_y.in.d[i].f = addr_buf.out.d.d[i+NxC].f;)
|
|
|
|
|
|
// Delay ack line. Ack line is delayed (but not the val)
|
|
A_2C_B_X1 C2el(.c1 = vtree_x.out, .c2 = vtree_y.out, .vdd = supply.vdd, .vss = supply.vss);
|
|
addr_buf.out.v = C2el.y;
|
|
|
|
delayprog<N_dly_cfg> dly(.in = C2el.y, .s = dly_cfg, .supply = supply);
|
|
dly.out = addr_buf.out.a;
|
|
|
|
// Decoder X/Y And trees
|
|
decoder_dualrail<NxC,Nx> d_dr_x(.out = outx, .supply = supply);
|
|
(i:0..NxC-1:d_dr_x.in.d[i] = addr_buf.out.d.d[i];)
|
|
|
|
decoder_dualrail<NyC,Ny> d_dr_y(.out = outy, .supply = supply);
|
|
(i:0..NyC-1:d_dr_y.in.d[i] = addr_buf.out.d.d[i+NxC];)
|
|
|
|
}
|
|
|
|
export template<pint Nx, Ny>
|
|
defproc and_grid(bool! out[Nx*Ny]; bool? inx[Nx], iny[Ny]; power supply) {
|
|
// Buffer inputs
|
|
sigbuf<Ny> xbuf[Nx];
|
|
sigbuf<Nx> ybuf[Ny];
|
|
(i:Nx:
|
|
xbuf[i].in = inx[i];
|
|
xbuf[i].supply = supply;
|
|
)
|
|
(i:Ny:
|
|
ybuf[i].in = iny[i];
|
|
ybuf[i].supply = supply;
|
|
)
|
|
|
|
AND2_X1 ands[Nx*Ny];
|
|
(i:0..Nx*Ny-1:ands[i].vss = supply.vss; ands[i].vdd = supply.vdd;)
|
|
(x:0..Nx-1:
|
|
(y:0..Ny-1:
|
|
ands[x + y*Nx].a = xbuf[x].out[y];
|
|
ands[x + y*Nx].b = ybuf[y].out[x];
|
|
ands[x + y*Nx].y = out[x + y*Nx];
|
|
)
|
|
)
|
|
}
|
|
|
|
|
|
/**
|
|
* 2D decoder which uses synapse handshaking using line pulldowns.
|
|
* Nx is the x size of the decoder array
|
|
* NxC is the number of wires in the x channel.
|
|
* but my guess is that we can't do logs...
|
|
* the req on a1of1 out is the req to each synapse.
|
|
* The ack back from each line should go high when the synapse is charged.
|
|
* N_dly is a hard coded delay of the pull down circuit.
|
|
* It can be set to 0.
|
|
*/
|
|
export template<pint NxC, NyC, Nx, Ny>
|
|
defproc decoder_2d_hs (avMx1of2<NxC+NyC> in; a1of1 out[Nx*Ny]; bool? reset_B; power supply) {
|
|
|
|
bool _reset_BX[Nx];
|
|
sigbuf<Nx> reset_sb(.in = reset_B, .out = _reset_BX, .supply = supply);
|
|
|
|
// Buffer to recieve concat(x,y) address packet
|
|
buffer<NxC+NyC> addr_buf(.in = in, .reset_B = reset_B, .supply = supply);
|
|
|
|
// Decoder X/Y And trees
|
|
decoder_dualrail<NxC,Nx> d_dr_x(.supply = supply);
|
|
(i:0..NxC-1:d_dr_x.in.d[i] = addr_buf.out.d.d[i];)
|
|
decoder_dualrail<NyC,Ny> d_dr_y(.supply = supply);
|
|
(i:0..NyC-1:d_dr_y.in.d[i] = addr_buf.out.d.d[i+NxC];)
|
|
|
|
// sig buf for reqx lines, since they go to synapse pull down gates.
|
|
sigbuf<Ny+1> d_dr_xX[Nx];
|
|
(i:Nx:
|
|
d_dr_xX[i].in = d_dr_x.out[i];
|
|
d_dr_xX[i].supply = supply;
|
|
)
|
|
|
|
// Validity
|
|
vtree<NxC> vtree_x (.supply = supply);
|
|
vtree<NyC> vtree_y (.supply = supply);
|
|
(i:0..NxC-1:vtree_x.in.d[i].t = addr_buf.out.d.d[i].t;)
|
|
(i:0..NxC-1:vtree_x.in.d[i].f = addr_buf.out.d.d[i].f;)
|
|
(i:0..NyC-1:vtree_y.in.d[i].t = addr_buf.out.d.d[i+NxC].t;)
|
|
(i:0..NyC-1:vtree_y.in.d[i].f = addr_buf.out.d.d[i+NxC].f;)
|
|
A_2C_B_X1 valid_Cel(.c1 = vtree_x.out, .c2 = vtree_y.out, .y = addr_buf.out.v,
|
|
.vdd = supply.vdd, .vss = supply.vss);
|
|
|
|
|
|
// and grid for reqs into synapses
|
|
and_grid<Nx, Ny> _and_grid(.inx = d_dr_x.out, .iny = d_dr_y.out, .supply = supply);
|
|
(i:Nx*Ny: out[i].r = _and_grid.out[i];)
|
|
|
|
// Acknowledge pull down time
|
|
|
|
// Pull DOWNs on the ackB lines by synapses (easier to invert).
|
|
bool _out_acksB[Nx]; // The vertical output ack lines from each syn.
|
|
A_2N_U_X4 ack_pulldowns[Nx*Ny];
|
|
pint index;
|
|
(i:Nx:
|
|
(j:Ny:
|
|
index = i + Nx*j;
|
|
ack_pulldowns[index].n1 = out[index].a;
|
|
ack_pulldowns[index].n2 = d_dr_xX[i].out[j];
|
|
ack_pulldowns[index].y = _out_acksB[i];
|
|
ack_pulldowns[index].vss = supply.vss;
|
|
ack_pulldowns[index].vdd = supply.vdd;
|
|
)
|
|
)
|
|
|
|
// Line end pull UPs (triggered once reqs removed)
|
|
// Use two pullups rather than and-pullup
|
|
// bc smaller
|
|
// and bc the delay that an AND induces means that the pullup could
|
|
// end up fighting a synapse pulldown, as both have the correct req sigs.
|
|
A_1P_U_X4 pu[Nx]; // TODO probably replace this with variable strength PU
|
|
A_1P_U_X4 pu_reset[Nx];
|
|
(i:Nx:
|
|
pu[i].p1 = d_dr_xX[i].out[Ny];
|
|
pu[i].y = _out_acksB[i];
|
|
pu[i].vdd = supply.vdd;
|
|
pu[i].vss = supply.vss;
|
|
|
|
pu_reset[i].p1 = _reset_BX[i];
|
|
pu_reset[i].y = _out_acksB[i];
|
|
pu_reset[i].vdd = supply.vdd;
|
|
pu_reset[i].vss = supply.vss;
|
|
)
|
|
|
|
// ORtree from all output acks, back to the buffer ack.
|
|
// This is instead of the ack that came from the delayed validity trees,
|
|
// in decoder_2d_dly.
|
|
ortree<Nx> _ortree(.supply = supply);
|
|
INV_X1 out_ack_invs[Nx];
|
|
(i:Nx:
|
|
out_ack_invs[i].a = _out_acksB[i];
|
|
out_ack_invs[i].vdd = supply.vdd;
|
|
out_ack_invs[i].vss = supply.vss;
|
|
|
|
_ortree.in[i] = out_ack_invs[i].y;
|
|
)
|
|
|
|
// C element to ensure that the buffer receives an invalid
|
|
// _only_ once _both_ ackB has been reset, _and_ its output data
|
|
// has been fully invalidated.
|
|
// Otherwise run into the issue that ack is removed before data is invalid.
|
|
A_2C_B_X1 buf_ack_Cel(.c1 = _ortree.out, .c2 = valid_Cel.y, .y = addr_buf.out.a,
|
|
.vdd = supply.vdd, .vss = supply.vss);
|
|
|
|
}
|
|
|
|
/**
|
|
* 2D decoder which uses either synapse handshaking, or just a delay.
|
|
* Controlled by the "hs_en" (handshake_enable) config bit.
|
|
* hs_en = 0 -> use delayed version.
|
|
* hs_en = 1 -> use synapse handshaking.
|
|
* Regardless of which version is used, the final ack going to the buffer
|
|
* goes through the prog_delay block.
|
|
* Thus, for the handshaking version to be used "correctly",
|
|
* dly_cfg should be set to all zeros.
|
|
*/
|
|
export template<pint NxC, NyC, Nx, Ny, N_dly_cfg>
|
|
defproc decoder_2d_hybrid (avMx1of2<NxC+NyC> in; a1of1 out[Nx*Ny]; bool? dly_cfg[N_dly_cfg], hs_en,
|
|
reset_B; power supply) {
|
|
|
|
bool _reset_BX[Nx];
|
|
sigbuf<Nx> reset_sb(.in = reset_B, .out = _reset_BX, .supply = supply);
|
|
|
|
bool hs_enB;
|
|
INV_X4 hs_inv(.a = hs_en, .y = hs_enB, .vdd = supply.vdd, .vss = supply.vss);
|
|
|
|
// Buffer to recieve concat(x,y) address packet
|
|
buffer<NxC+NyC> addr_buf(.in = in, .reset_B = reset_B, .supply = supply);
|
|
|
|
// Decoder X/Y And trees
|
|
decoder_dualrail<NxC,Nx> d_dr_x(.supply = supply);
|
|
(i:0..NxC-1:d_dr_x.in.d[i] = addr_buf.out.d.d[i];)
|
|
decoder_dualrail<NyC,Ny> d_dr_y(.supply = supply);
|
|
(i:0..NyC-1:d_dr_y.in.d[i] = addr_buf.out.d.d[i+NxC];)
|
|
|
|
// sig buf for reqx lines, since they go to synapse pull down gates.
|
|
// Signals to the and-grid are buffered therein.
|
|
sigbuf<Ny+1> d_dr_xX[Nx];
|
|
(i:Nx:
|
|
d_dr_xX[i].in = d_dr_x.out[i];
|
|
d_dr_xX[i].supply = supply;
|
|
)
|
|
|
|
// Validity
|
|
vtree<NxC> vtree_x (.supply = supply);
|
|
vtree<NyC> vtree_y (.supply = supply);
|
|
(i:0..NxC-1:vtree_x.in.d[i].t = addr_buf.out.d.d[i].t;)
|
|
(i:0..NxC-1:vtree_x.in.d[i].f = addr_buf.out.d.d[i].f;)
|
|
(i:0..NyC-1:vtree_y.in.d[i].t = addr_buf.out.d.d[i+NxC].t;)
|
|
(i:0..NyC-1:vtree_y.in.d[i].f = addr_buf.out.d.d[i+NxC].f;)
|
|
A_2C_B_X1 valid_Cel(.c1 = vtree_x.out, .c2 = vtree_y.out, .y = addr_buf.out.v,
|
|
.vdd = supply.vdd, .vss = supply.vss);
|
|
|
|
|
|
// and grid for reqs into synapses
|
|
and_grid<Nx, Ny> _and_grid(.inx = d_dr_x.out, .iny = d_dr_y.out, .supply = supply);
|
|
(i:Nx*Ny: out[i].r = _and_grid.out[i];)
|
|
|
|
// Acknowledge pull down time
|
|
|
|
// Pull DOWNs on the ackB lines by synapses (easier to invert).
|
|
bool _out_acksB[Nx]; // The vertical output ack lines from each syn.
|
|
A_2N_U_X4 ack_pulldowns[Nx*Ny];
|
|
pint index;
|
|
(i:Nx:
|
|
(j:Ny:
|
|
index = i + Nx*j;
|
|
ack_pulldowns[index].n1 = out[index].a;
|
|
ack_pulldowns[index].n2 = d_dr_xX[i].out[j];
|
|
ack_pulldowns[index].y = _out_acksB[i];
|
|
ack_pulldowns[index].vss = supply.vss;
|
|
ack_pulldowns[index].vdd = supply.vdd;
|
|
)
|
|
)
|
|
|
|
// Line end pull UPs (triggered once reqs removed)
|
|
// Use two pullups rather than and-pullup
|
|
// bc smaller
|
|
// and bc the delay that an AND induces means that the pullup could
|
|
// end up fighting a synapse pulldown, as both have the correct req sigs.
|
|
A_2P_U_X4 pu[Nx]; // TODO probably replace this with variable strength PU
|
|
A_1P_U_X4 pu_reset[Nx];
|
|
(i:Nx:
|
|
pu[i].p1 = d_dr_xX[i].out[Ny];
|
|
pu[i].p2 = hs_enB;
|
|
pu[i].y = _out_acksB[i];
|
|
pu[i].vdd = supply.vdd;
|
|
pu[i].vss = supply.vss;
|
|
|
|
pu_reset[i].p1 = _reset_BX[i];
|
|
pu_reset[i].y = _out_acksB[i];
|
|
pu_reset[i].vdd = supply.vdd;
|
|
pu_reset[i].vss = supply.vss;
|
|
)
|
|
|
|
// Add keeps (currently don't do anything in ACT)
|
|
KEEP keeps[Nx];
|
|
(i:Nx:
|
|
keeps[i].vdd = supply.vdd;
|
|
keeps[i].vss = supply.vss;
|
|
keeps[i].y = _out_acksB[i];
|
|
)
|
|
|
|
// ORtree from all output acks, back to the buffer ack.
|
|
// This is instead of the ack that came from the delayed validity trees,
|
|
// in decoder_2d_dly.
|
|
ortree<Nx> _ortree(.supply = supply);
|
|
INV_X1 out_ack_invs[Nx];
|
|
(i:Nx:
|
|
out_ack_invs[i].a = _out_acksB[i];
|
|
out_ack_invs[i].vdd = supply.vdd;
|
|
out_ack_invs[i].vss = supply.vss;
|
|
|
|
_ortree.in[i] = out_ack_invs[i].y;
|
|
)
|
|
|
|
// C element to ensure that the buffer receives an invalid
|
|
// _only_ once _both_ ackB has been reset, _and_ its output data
|
|
// has been fully invalidated.
|
|
// Otherwise run into the issue that ack is removed before data is invalid.
|
|
A_2C_B_X1 buf_ack_Cel(.c1 = _ortree.out, .c2 = valid_Cel.y,
|
|
.vdd = supply.vdd, .vss = supply.vss);
|
|
|
|
// Mux to switch between acks from handshake or delay
|
|
MUX2_X1 ack_mux(.s = hs_en, .a = valid_Cel.y, .b = buf_ack_Cel.y,
|
|
.vdd = supply.vdd, .vss = supply.vss);
|
|
|
|
// Programmable delay
|
|
delayprog<N_dly_cfg> dly(.in = ack_mux.y, .out = addr_buf.out.a, .s = dly_cfg, .supply = supply);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Build an arbiter_handshake tree.
|
|
*/
|
|
export template<pint N>
|
|
defproc arbtree (a1of1 in[N]; a1of1 out; power supply)
|
|
{
|
|
bool tout;
|
|
|
|
{ N > 0 : "What?" };
|
|
|
|
pint i, end, j;
|
|
i = 0;
|
|
end = N-1;
|
|
|
|
pint arbCount;
|
|
arbCount = 0;
|
|
/* Pre"calculate" the number of C cells required, look below if confused */
|
|
*[ i != end ->
|
|
j = 0;
|
|
*[ i <= end ->
|
|
j = j + 1;
|
|
[i = end ->
|
|
i = end+1;
|
|
[] i+1 = end ->
|
|
i = end+1;
|
|
arbCount = arbCount +1;
|
|
[] else ->
|
|
i = i + 2;
|
|
arbCount = arbCount +1;
|
|
]
|
|
]
|
|
/*-- update range that has to be combined --*/
|
|
// i = end+1;
|
|
end = end+j;
|
|
]
|
|
|
|
/* array that holds ALL the nodes in the completion tree */
|
|
a1of1 tmp[end+1];
|
|
|
|
// Connecting the first nodes to the input
|
|
(l:N:
|
|
tmp[l] = in[l];
|
|
)
|
|
|
|
/* array to hold the actual C-elments, either A2C or A3C */
|
|
[arbCount > 0 ->
|
|
arbiter_handshake arbs[arbCount];
|
|
]
|
|
(h:arbCount:arbs[h].supply = supply;)
|
|
|
|
/* Reset the variables we just stole lol */
|
|
i = 0;
|
|
end = N-1;
|
|
j = 0;
|
|
pint arbIndex = 0;
|
|
|
|
/* Invariant: i <= end */
|
|
|
|
*[ i != end ->
|
|
/*
|
|
* Invariant: tmp[i..end] has the current signals that need to be
|
|
* combined together, and "isinv" specifies if they are the inverted
|
|
* sense or not
|
|
*/
|
|
j = 0;
|
|
*[ i <= end ->
|
|
/*-- there are still signals that need to be combined --*/
|
|
j = j + 1;
|
|
[ i = end ->
|
|
/*-- last piece: pipe input through to next layer --*/
|
|
tmp[end+j] = tmp[i];
|
|
i = end+1;
|
|
[] i+1 = end ->
|
|
/*-- last piece: use either a 2 input C-element --*/
|
|
arbs[arbIndex].in1 = tmp[i];
|
|
arbs[arbIndex].in2 = tmp[i+1];
|
|
arbs[arbIndex].out = tmp[end+j];
|
|
arbIndex = arbIndex +1;
|
|
i = end+1;
|
|
[] else ->
|
|
/*-- more to come; so use a two input C-element --*/
|
|
arbs[arbIndex].in1 = tmp[i];
|
|
arbs[arbIndex].in2 = tmp[i+1];
|
|
arbs[arbIndex].out = tmp[end+j];
|
|
arbIndex = arbIndex +1;
|
|
i = i + 2;
|
|
]
|
|
]
|
|
/*-- update range that has to be combined --*/
|
|
i = end+1;
|
|
end = end+j;
|
|
j = 0;
|
|
]
|
|
|
|
out = tmp[end];
|
|
|
|
}
|
|
|
|
// Generates the OR-trees required to go from
|
|
// N one-hot inputs to Nc dual rail binary encoding.
|
|
export template<pint Nc, N>
|
|
defproc dualrail_encoder(bool? in[N]; Mx1of2<Nc> out; power supply) {
|
|
{N <= 1<<Nc : "Num inputs too wide for encoding channel!"};
|
|
|
|
// For each output line, need to precalculate how big of an OR tree it needs
|
|
// since can't presume that N = 2**Nc
|
|
// First version however, just be hella lazy and presume N=2**Nc,
|
|
// connect extra nodes to ground (sorry)
|
|
pint _N; // N rounded up to a power of 2
|
|
_N = (1<<Nc);
|
|
ortree<_N/2> ors_t[Nc];
|
|
ortree<_N/2> ors_f[Nc];
|
|
(i:Nc:ors_t[i].supply = supply; ors_t[i].out = out.d[i].t;)
|
|
(i:Nc:ors_f[i].supply = supply; ors_f[i].out = out.d[i].f;)
|
|
|
|
bool _inX[N];
|
|
sigbuf_boolarray<N, Nc> sb_in(.in = in, .out = _inX, .supply = supply);
|
|
|
|
pint num_connected_t; // Number of guys already connected to the current OR tree
|
|
pint num_connected_f;
|
|
|
|
TIELO_X1 tielo[Nc]; // I'm sorry
|
|
(i:Nc:tielo[i].vdd = supply.vdd; tielo[i].vss = supply.vss;)
|
|
|
|
pint bitval;
|
|
(i:0..Nc-1: // For each output line
|
|
num_connected_t = 0;
|
|
num_connected_f = 0;
|
|
(j:0.. _N-1:
|
|
bitval = (j & ( 1 << i )) >> i; // Get binary digit of integer j, column i
|
|
[bitval = 1 & j <= N-1->
|
|
ors_t[i].in[num_connected_t] = _inX[j];
|
|
num_connected_t = num_connected_t + 1;
|
|
[] bitval = 0 & j <= N-1->
|
|
ors_f[i].in[num_connected_f] = _inX[j];
|
|
num_connected_f = num_connected_f + 1;
|
|
[] bitval = 1 & j > N-1->
|
|
ors_t[i].in[num_connected_t] = tielo[i].y;
|
|
num_connected_t = num_connected_t + 1;
|
|
[] bitval = 0 & j > N-1->
|
|
ors_f[i].in[num_connected_f] = tielo[i].y;
|
|
num_connected_f = num_connected_f + 1;
|
|
]
|
|
|
|
)
|
|
|
|
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Buffer function code.
|
|
* Is the function block ripped from the buffer_s.
|
|
* Used in the encoder2d.
|
|
*/
|
|
export template<pint N>
|
|
defproc buffer_s_func (Mx1of2<N> in; avMx1of2<N> out; bool? in_v, en, reset_B; power supply) {
|
|
//function
|
|
bool _out_a_BX_t[N],_out_a_BX_f[N],_out_a_B,_en_X_t[N],_en_X_f[N], _in_vX;
|
|
// bool _in_vXX_t[N],_in_vXX_f[N];
|
|
|
|
|
|
A_2C2N_RB_X4 f_buf_func[N];
|
|
A_2C2N_RB_X4 t_buf_func[N];
|
|
|
|
// reset buffers
|
|
bool _reset_BX,_reset_BXX[N*2];
|
|
BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
sigbuf<N*2> reset_bufarray(.in=_reset_BX, .out=_reset_BXX, .supply=supply);
|
|
|
|
// Enable signal buffers
|
|
sigbuf<N> en_buf_t(.in=en, .out=_en_X_t, .supply=supply);
|
|
sigbuf<N> en_buf_f(.in=en, .out=_en_X_f, .supply=supply);
|
|
|
|
// out ack signal buffers
|
|
INV_X1 out_a_inv(.a=out.a,.y=_out_a_B, .vss = supply.vss, .vdd = supply.vdd);
|
|
sigbuf<N> out_a_B_buf_f(.in=_out_a_B,.out=_out_a_BX_t, .supply=supply);
|
|
sigbuf<N> out_a_B_buf_t(.in=_out_a_B,.out=_out_a_BX_f, .supply=supply);
|
|
|
|
// in val signal buffers
|
|
BUF_X4 in_v_prebuf(.a = in_v, .y = _in_vX, .vss = supply.vss, .vdd = supply.vdd);
|
|
// sigbuf<N> in_v_buf_t(.in=_in_vX, .out=_in_vXX_t, .supply=supply);
|
|
// sigbuf<N> in_v_buf_f(.in=_in_vX, .out=_in_vXX_f, .supply=supply);
|
|
sigbuf<N*2> in_v_buf(.in=_in_vX,.supply=supply);
|
|
|
|
|
|
(i:N:
|
|
f_buf_func[i].y=out.d.d[i].f;
|
|
t_buf_func[i].y=out.d.d[i].t;
|
|
f_buf_func[i].c1=_en_X_f[i];
|
|
t_buf_func[i].c1=_en_X_t[i];
|
|
f_buf_func[i].c2=_out_a_BX_f[i];
|
|
t_buf_func[i].c2=_out_a_BX_t[i];
|
|
f_buf_func[i].n1=in.d[i].f;
|
|
t_buf_func[i].n1=in.d[i].t;
|
|
f_buf_func[i].n2=in_v_buf.out[i];
|
|
t_buf_func[i].n2=in_v_buf.out[i+N];
|
|
f_buf_func[i].vdd=supply.vdd;
|
|
t_buf_func[i].vdd=supply.vdd;
|
|
f_buf_func[i].vss=supply.vss;
|
|
t_buf_func[i].vss=supply.vss;
|
|
t_buf_func[i].pr_B = _reset_BXX[i];
|
|
t_buf_func[i].sr_B = _reset_BXX[i];
|
|
f_buf_func[i].pr_B = _reset_BXX[i+N];
|
|
f_buf_func[i].sr_B = _reset_BXX[i+N];
|
|
)
|
|
|
|
}
|
|
|
|
|
|
export template<pint NxC, NyC, Nx, Ny, ACK_STRENGTH>
|
|
defproc encoder2d(a1of1 inx[Nx]; a1of1 iny[Ny]; avMx1of2<(NxC + NyC)> out; power supply; bool reset_B) {
|
|
// Reset buffers
|
|
pint H = 2*(NxC + NyC); //Reset strength? to be investigated
|
|
|
|
bool _reset_BX,_reset_BXX[H];
|
|
BUF_X4 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
sigbuf<2*(NxC + NyC)> reset_bufarray(.in=_reset_BX, .out=_reset_BXX,.supply=supply);
|
|
|
|
// Arbiters
|
|
a1of1 _arb_out_x, _arb_out_y;
|
|
a1of1 _x_temp[Nx],_y_temp[Ny]; // For wiring the reqs to the arbtrees
|
|
(i:Nx:
|
|
_x_temp[i].r = inx[i].r;
|
|
)
|
|
(i:Ny:
|
|
_y_temp[i].r = iny[i].r;
|
|
)
|
|
arbtree<Nx> Xarb(.in = _x_temp,.out = _arb_out_x,.supply = supply);
|
|
arbtree<Ny> Yarb(.in = _y_temp,.out = _arb_out_y,.supply = supply);
|
|
|
|
// Sigbufs for strong ackowledge signals from arb_in's
|
|
sigbuf_1output<ACK_STRENGTH> x_ack_arb[Nx];
|
|
sigbuf_1output<ACK_STRENGTH> y_ack_arb[Ny];
|
|
(i:Nx:
|
|
x_ack_arb[i].in = _x_temp[i].a;
|
|
x_ack_arb[i].out = inx[i].a;
|
|
x_ack_arb[i].supply = supply;
|
|
)
|
|
(i:Ny:
|
|
y_ack_arb[i].in = _y_temp[i].a;
|
|
y_ack_arb[i].out = iny[i].a;
|
|
y_ack_arb[i].supply = supply;
|
|
)
|
|
|
|
// This block checks that the input is valid and that the arbiter made a choice
|
|
// Then activates the ack of the arbiter
|
|
bool _x_v,_in_x_v,_in_y_v,_x_a_B,_x_a;
|
|
A_2C2P_RB_X1 Y_ack_confirm();
|
|
Y_ack_confirm.p1 = _x_v;
|
|
Y_ack_confirm.p2 =_in_x_v;
|
|
Y_ack_confirm.c1 = _arb_out_y.r;
|
|
Y_ack_confirm.c2 = _x_a_B;
|
|
Y_ack_confirm.y = _arb_out_y.a;
|
|
Y_ack_confirm.vdd = supply.vdd;
|
|
Y_ack_confirm.vss = supply.vss;
|
|
Y_ack_confirm.reset_B = _reset_BX;
|
|
|
|
// This block checks that the input is valid and that the arbiter made a choice
|
|
// Then activates the ack of the arbiter
|
|
A_2C_RB_X1 X_ack_confirm();
|
|
X_ack_confirm.c1 = _arb_out_x.r;
|
|
X_ack_confirm.c2 = _x_a_B;
|
|
X_ack_confirm.vdd = supply.vdd;
|
|
X_ack_confirm.vss = supply.vss;
|
|
X_ack_confirm.pr_B = _reset_BX;
|
|
X_ack_confirm.sr_B = _reset_BX;
|
|
X_ack_confirm.y = _arb_out_x.a;
|
|
|
|
|
|
// X_req ORtree
|
|
bool _x_req_array[Nx], _x_v_B;
|
|
(i:Nx:_x_req_array[i] = inx[i].r;)
|
|
ortree<Nx> x_req_ortree(.in = _x_req_array, .supply = supply); //todo BUFF
|
|
INV_X1 not_x_req_ortree(.a = x_req_ortree.out, .y = _x_v_B);
|
|
INV_X1 not_x_req_ortree2(.a = _x_v_B,.y = _x_v);
|
|
|
|
|
|
//X_REQ validation
|
|
// bool _x_req_array[Nx],_x_v_B, _en;
|
|
// (i:Nx:_x_req_array[i] = x[i].r;)
|
|
// ortree x_req_ortree(.in = _x_req_array,.out = _x_v,.supply = supply);
|
|
// INV_X1 not_x_req_ortree(.a = _x_v,.y = _x_v_B);
|
|
|
|
bool _x_a_B2; // sorry
|
|
|
|
bool _en;
|
|
A_1C3P2P2N_R_X1 x_ack();
|
|
//branch1
|
|
x_ack.p4 = _in_x_v;
|
|
x_ack.p5 = _x_v_B;
|
|
//branch2
|
|
x_ack.p1 = _in_x_v;
|
|
x_ack.p2 = _in_y_v;
|
|
x_ack.p3 = _x_v;
|
|
//
|
|
x_ack.c1 = _en;
|
|
x_ack.n1 = out.v;
|
|
x_ack.n2 = _in_x_v;
|
|
//
|
|
x_ack.y = _x_a_B2;
|
|
//
|
|
x_ack.vdd = supply.vdd;
|
|
x_ack.vss = supply.vss;
|
|
x_ack.pr_B = _reset_BX;
|
|
x_ack.sr_B = _reset_BX;
|
|
|
|
INV_X1 not_x_ack(.a = _x_a_B2, .y = _x_a, .vdd = supply.vdd, .vss = supply.vss);
|
|
INV_X1 not_x_ack2(.a = _x_a, .y = _x_a_B, .vdd = supply.vdd, .vss = supply.vss);
|
|
|
|
|
|
A_1C2P_X1 enabling(.p1 = out.a, .p2 = out.v, .c1 = _x_a, .y = _en, .vdd = supply.vdd, .vss = supply.vss);
|
|
|
|
avMx1of2<(NxC + NyC)> _in_x;
|
|
|
|
// Encoders
|
|
bool x_acks[Nx];
|
|
Mx1of2<NxC> x_enc_out;
|
|
(i:Nx:x_acks[i] = inx[i].a;)
|
|
dualrail_encoder<NxC, Nx> x_encoder(.in = x_acks, .out = x_enc_out, .supply = supply);
|
|
|
|
bool y_acks[Ny];
|
|
Mx1of2<NyC> y_enc_out;
|
|
(i:Ny:y_acks[i] = iny[i].a;)
|
|
dualrail_encoder<NyC, Ny> y_encoder(.in = y_acks, .out = y_enc_out, .supply = supply);
|
|
|
|
// Valid trees
|
|
vtree<NxC> vtree_x(.in = x_enc_out, .out = _in_x_v, .supply = supply);
|
|
vtree<NyC> vtree_y(.in = y_enc_out, .out = _in_y_v, .supply = supply);
|
|
|
|
// Buffer func thing
|
|
Mx1of2<NxC + NyC> into_buffer;
|
|
(i:0..NxC-1:into_buffer.d[i] = x_enc_out.d[i];)
|
|
(i:0..NyC-1:into_buffer.d[i+NxC] = y_enc_out.d[i];)
|
|
AND2_X1 _in_xy_v(.a = _in_x_v, .b = _in_y_v, .vss = supply.vss, .vdd = supply.vdd);
|
|
buffer_s_func<NxC + NyC> buf_s_func(.in = into_buffer, .out = out,
|
|
.en = _en, .in_v = _in_xy_v.y, .supply = supply, .reset_B = reset_B);
|
|
|
|
}
|
|
|
|
|
|
export template<pint NxC, NyC, Nx, Ny>
|
|
defproc encoder2d_simple(a1of1 inx[Nx]; a1of1 iny[Ny]; avMx1of2<(NxC + NyC)> out;
|
|
power supply; bool reset_B) {
|
|
|
|
bool _a_x, _a_y;
|
|
bool _r_x, _r_y;
|
|
bool _r_x_B, _r_y_B;
|
|
|
|
buffer<NxC + NyC> buf(.out = out, .supply = supply, .reset_B = reset_B);
|
|
|
|
// Arbiters
|
|
arbtree<Nx> Xarb(.supply = supply);
|
|
arbtree<Ny> Yarb(.supply = supply);
|
|
Xarb.out.a = _a_x;
|
|
Xarb.out.r = _r_x;
|
|
Yarb.out.a = _a_y;
|
|
Yarb.out.r = _r_y;
|
|
|
|
// Encoders
|
|
dualrail_encoder<NxC, Nx> Xenc(.supply = supply);
|
|
dualrail_encoder<NyC, Ny> Yenc(.supply = supply);
|
|
|
|
// Wire up inputs to encoders and arb
|
|
(i:Nx:
|
|
Xarb.in[i].r = inx[i].r;
|
|
Xarb.in[i].a = inx[i].a;
|
|
Xenc.in[i] = inx[i].a;
|
|
)
|
|
|
|
// Wire up inputs to encoders and arb
|
|
(i:Ny:
|
|
Yarb.in[i].r = iny[i].r;
|
|
Yarb.in[i].a = iny[i].a;
|
|
Yenc.in[i] = iny[i].a;
|
|
)
|
|
|
|
INV_X2 inv_buf(.a = buf.in.a, .vdd = supply.vdd, .vss = supply.vss);
|
|
|
|
A_2C_RB_X1 a_x_Cel(.c1 = inv_buf.y, .c2 = _r_x, .y = _a_x,
|
|
.sr_B = reset_B, .pr_B = reset_B, .vdd = supply.vdd, .vss = supply.vss);
|
|
A_2C_RB_X1 a_y_Cel(.c1 = inv_buf.y, .c2 = _r_y, .y = _a_y,
|
|
.sr_B = reset_B, .pr_B = reset_B, .vdd = supply.vdd, .vss = supply.vss);
|
|
|
|
// Wire up encoder to buffer
|
|
(i:NxC:
|
|
Xenc.out.d[i] = buf.in.d.d[i];
|
|
)
|
|
(i:NyC:
|
|
Yenc.out.d[i] = buf.in.d.d[i+NxC];
|
|
)
|
|
|
|
}
|
|
|
|
export template<pint Nc, N>
|
|
defproc encoder1d_simple(a1of1 in[N]; avMx1of2<Nc> out;
|
|
power supply; bool reset_B) {
|
|
|
|
bool _a_x, _r_x;
|
|
bool _r_x_B;
|
|
|
|
buffer<Nc> buf(.out = out, .supply = supply, .reset_B = reset_B);
|
|
|
|
// Arbiters
|
|
arbtree<N> Xarb(.supply = supply);
|
|
Xarb.out.a = _a_x;
|
|
Xarb.out.r = _r_x;
|
|
|
|
// Encoders
|
|
dualrail_encoder<Nc, N> Xenc(.supply = supply);
|
|
|
|
// Wire up inputs to encoders and arb
|
|
(i:N:
|
|
Xarb.in[i].r = in[i].r;
|
|
Xarb.in[i].a = in[i].a;
|
|
Xenc.in[i] = in[i].a;
|
|
)
|
|
|
|
INV_X2 inv_buf(.a = buf.in.a, .vdd = supply.vdd, .vss = supply.vss);
|
|
|
|
A_2C_RB_X1 a_x_Cel(.c1 = inv_buf.y, .c2 = _r_x, .y = _a_x,
|
|
.sr_B = reset_B, .pr_B = reset_B, .vdd = supply.vdd, .vss = supply.vss);
|
|
|
|
// Wire up encoder to buffer
|
|
(i:Nc:
|
|
Xenc.out.d[i] = buf.in.d.d[i];
|
|
)
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* Neuron handshaking.
|
|
* Looks for a rising edge on the neuron req.
|
|
* Then performs a 2d handshake out outy then outx.
|
|
*/
|
|
export
|
|
defproc nrn_hs_2d(a1of1 in; a1of1 outx; a1of1 outy; power supply; bool reset_B) {
|
|
bool _reset_BX;
|
|
BUF_X2 reset_buf(.a = reset_B, .y = _reset_BX, .vdd = supply.vdd, .vss = supply.vss);
|
|
|
|
bool _en, _req;
|
|
|
|
A_2C1N_RB_X1 A_ack(.c1 = _en, .c2 = in.r, .n1 = _req, .y = in.a,
|
|
.pr_B = _reset_BX, .sr_B = _reset_BX, .vss = supply.vss, .vdd = supply.vdd);
|
|
|
|
|
|
A_1C1P_X1 A_en(.p1 = _req, .c1 = in.a, .y = _en,
|
|
.vss = supply.vss, .vdd = supply.vdd);
|
|
|
|
bool _y_a_B, _x_a_B;
|
|
INV_X2 inv_x(.a = outx.a, .y = _x_a_B, .vss = supply.vss, .vdd = supply.vdd);
|
|
INV_X2 inv_y(.a = outy.a, .y = _y_a_B, .vss = supply.vss, .vdd = supply.vdd);
|
|
|
|
|
|
// WARNUNG WARNUNG WARNUNG //
|
|
// This neuron hs design has a fat timing assumption.
|
|
// Say that the neuron has sent out both reqs, and is now receiving the acks.
|
|
// _x_a_B and _y_a_B are then low, and _req starts to be pulled down to reset the hs.
|
|
// However, if the line pull downs at the end of the neuron row/column are fast enough,
|
|
// then seeing the high acks, they will pull the ack lines down. If the arbiter tree
|
|
// is sufficiently fast enough, then it will remove the ack lines.
|
|
// If this cell were rather tardy, then _req's pd would be cancelled midway,
|
|
// it missed its window of opportunity to switch, and would probably make the system hang.
|
|
// Or starts oscillating with the line pull down and goes brrrrapppppppp.
|
|
// This issue may be somewhat unavoidable, as from a black box perspective,
|
|
// we are giving the neuron acks, but then not listening to it at all to check
|
|
// that it has had time to act upon these acks.
|
|
A_2C1P1N_RB_X1 A_req(.p1 = _x_a_B, .c1 = _en, .c2 = _y_a_B, .n1 = in.r, .y = _req,
|
|
.pr_B = _reset_BX, .sr_B = _reset_BX, .vdd = supply.vdd, .vss = supply.vss);
|
|
|
|
// y_req pull up
|
|
bool _reqB;
|
|
INV_X1 req_inv(.a = _req, .y = _reqB, .vdd= supply.vdd, .vss = supply.vss);
|
|
A_2P_U_X4 pu_y(.p1 = _reqB, .p2 = outy.a, .y = outy.r, .vdd = supply.vdd, .vss = supply.vss);
|
|
|
|
// x_req pull up
|
|
A_3P_U_X4 pu_x(.p1 = outx.a, .p2 = _reqB, .p3 = _y_a_B, .y = outx.r,
|
|
.vdd = supply.vdd, .vss = supply.vss);
|
|
|
|
|
|
}
|
|
|
|
|
|
// export
|
|
// defproc nrn_line_end_pull_down (bool? in; bool? reset_B; power supply; bool! out)
|
|
// {
|
|
// bool _out, __out, nand_out;
|
|
// BUF_X1 buf1(.a=in, .y=_out, .vdd=supply.vdd,.vss=supply.vss);
|
|
// BUF_X1 buf2(.a=_out, .y=__out, .vdd=supply.vdd,.vss=supply.vss);
|
|
// INV_X1 inv(.a = __out, .vdd=supply.vdd,.vss =supply.vss);
|
|
|
|
// NAND2_X1 aenor(.a=inv.y, .b=reset_B, .y = nand_out, .vdd=supply.vdd,.vss=supply.vss);
|
|
|
|
// A_1N_U_X4 pull_down(.a=nand_out, .y=out);
|
|
// }
|
|
|
|
export
|
|
defproc nrn_line_end_pull_down (bool? in; bool? reset_B; power supply; bool! out)
|
|
{
|
|
INV_X1 inv(.a = reset_B, .vdd=supply.vdd,.vss =supply.vss);
|
|
|
|
A_1N_U_X4 pull_down(.n1=in, .y=out);
|
|
A_1N_U_X4 pull_downR(.n1=inv.y, .y=out);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* A 2d grid of neuron handshakers.
|
|
* Should then slot into the encoder.
|
|
* Each neuron has an a1of1 channel (in), which is tripped when a neuron spikes.
|
|
* N_dly is number of delay elements to add to line pull down,
|
|
* for the purpose of running ACT sims.
|
|
* It should probably be set to 0 though.
|
|
*/
|
|
export template<pint Nx, Ny, N_dly>
|
|
defproc nrn_hs_2d_array(a1of1 in[Nx*Ny]; a1of1 outx[Nx], outy[Ny];
|
|
power supply; bool reset_B) {
|
|
|
|
// Make hella signal buffers
|
|
sigbuf<Ny> rsbx(.in = reset_B, .supply = supply);
|
|
sigbuf<Nx> rsb[Ny]; // ResetSigBuf
|
|
(j:Ny:
|
|
rsb[j].in = rsbx.out[j];
|
|
rsb[j].supply = supply;
|
|
)
|
|
|
|
// Add buffers on output req lines
|
|
a1of1 _outx[Nx], _outy[Ny];
|
|
BUF_X4 out_req_buf_x[Nx];
|
|
(i:Nx:
|
|
out_req_buf_x[i].vss = supply.vss;
|
|
out_req_buf_x[i].vdd = supply.vdd;
|
|
out_req_buf_x[i].a = _outx[i].r;
|
|
out_req_buf_x[i].y = outx[i].r;
|
|
)
|
|
BUF_X4 out_req_buf_y[Ny];
|
|
(i:Ny:
|
|
out_req_buf_y[i].vss = supply.vss;
|
|
out_req_buf_y[i].vdd = supply.vdd;
|
|
out_req_buf_y[i].a = _outy[i].r;
|
|
out_req_buf_y[i].y = outy[i].r;
|
|
)
|
|
// Add buffers on output ack lines
|
|
// Note that this should be generalised.
|
|
// And probably won't even be done by ACT/innovus anwyay
|
|
// TODO: do it properly with sigbufs?
|
|
BUF_X12 out_ack_buf_x[Nx];
|
|
(i:Nx:
|
|
out_ack_buf_x[i].vss = supply.vss;
|
|
out_ack_buf_x[i].vdd = supply.vdd;
|
|
out_ack_buf_x[i].a = outx[i].a;
|
|
out_ack_buf_x[i].y = _outx[i].a;
|
|
)
|
|
BUF_X12 out_ack_buf_y[Ny];
|
|
(i:Ny:
|
|
out_ack_buf_y[i].vss = supply.vss;
|
|
out_ack_buf_y[i].vdd = supply.vdd;
|
|
out_ack_buf_y[i].a = outy[i].a;
|
|
out_ack_buf_y[i].y = _outy[i].a;
|
|
)
|
|
|
|
|
|
|
|
// Create handshake grid
|
|
pint index;
|
|
nrn_hs_2d neurons[Nx*Ny];
|
|
(i:0..Nx-1:
|
|
(j:0..Ny-1:
|
|
index = i + j*Nx;
|
|
neurons[index].supply = supply;
|
|
neurons[index].reset_B = rsb[j].out[i];
|
|
neurons[index].in = in[index];
|
|
neurons[index].outx = _outx[i];
|
|
neurons[index].outy = _outy[j];
|
|
)
|
|
)
|
|
|
|
// Create delay fifos to emulate the fact that the line pull downs
|
|
// are at the end of the line, and thus slow.
|
|
// Note that if N_dly = 0, delay fifo is just a pipe.
|
|
delay_chain<N_dly> dly_x[Nx];
|
|
delay_chain<N_dly> dly_y[Ny];
|
|
|
|
// Create x line req pull downs
|
|
nrn_line_end_pull_down pd_x[Nx];
|
|
sigbuf<Nx> rsb_pd_x(.in = reset_B, .supply = supply);
|
|
(i:0..Nx-1:
|
|
dly_x[i].supply = supply;
|
|
dly_x[i].in = _outx[i].a;
|
|
pd_x[i].in = dly_x[i].out;
|
|
|
|
pd_x[i].out = _outx[i].r;
|
|
pd_x[i].reset_B = rsb_pd_x.out[i];
|
|
pd_x[i].supply = supply;
|
|
)
|
|
|
|
// Create y line req pull downs
|
|
nrn_line_end_pull_down pd_y[Ny];
|
|
sigbuf<Ny> rsb_pd_y(.in = reset_B, .supply = supply);
|
|
(j:0..Ny-1:
|
|
dly_y[j].supply = supply;
|
|
dly_y[j].in = _outy[j].a;
|
|
pd_y[j].in = dly_y[j].out;
|
|
|
|
pd_y[j].out = _outy[j].r;
|
|
pd_y[j].reset_B = rsb_pd_y.out[j];
|
|
pd_y[j].supply = supply;
|
|
)
|
|
|
|
// Add keeps
|
|
KEEP keep_x[Nx];
|
|
(i:Nx:
|
|
keep_x[i].vdd = supply.vdd;
|
|
keep_x[i].vss = supply.vss;
|
|
keep_x[i].y = _outx[i].r;
|
|
)
|
|
|
|
KEEP keep_y[Ny];
|
|
(j:Ny:
|
|
keep_y[j].vdd = supply.vdd;
|
|
keep_y[j].vss = supply.vss;
|
|
keep_y[j].y = _outy[j].r;
|
|
)
|
|
}
|
|
|
|
|
|
}
|
|
|
|
}
|