actlib_dataflow_neuro/dataflow_neuro/registers.act

253 lines
12 KiB
Plaintext

/*************************************************************************
*
* This file is part of ACT dataflow neuro library
*
* Copyright (c) 2022 University of Groningen - Ole Richter
* Copyright (c) 2022 University of Groningen - Michele Mastella
* Copyright (c) 2022 University of Groningen - Hugh Greatorex
* Copyright (c) 2022 University of Groningen - Madison Cotteret
*
*
* This source describes Open Hardware and is licensed under the CERN-OHL-W v2 or later
*
* You may redistribute and modify this documentation and make products
* using it under the terms of the CERN-OHL-W v2 (https:/cern.ch/cern-ohl).
* This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY
* AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-W v2
* for applicable conditions.
*
* Source location: https://git.web.rug.nl/bics/actlib_dataflow_neuro
*
* As per CERN-OHL-W v2 section 4.1, should You produce hardware based on
* these sources, You must maintain the Source Location visible in its
* documentation.
*
**************************************************************************
*/
import "../../dataflow_neuro/cell_lib_async.act";
import "../../dataflow_neuro/cell_lib_std.act";
import "../../dataflow_neuro/treegates.act";
import "../../dataflow_neuro/primitives.act";
import "../../dataflow_neuro/coders.act";
// import tmpl::dataflow_neuro;
// import tmpl::dataflow_neuro;
import std::channel;
open std::channel;
namespace tmpl {
namespace dataflow_neuro {
// Circuit for storing registers using AER
// The block has the parameters:
// lognw -> log2(number of words), parameters you can store
// wl -> word length, length of each word
// N_dly_cfg -> the number of config bits in the ACK delay line
// The block has the pins:
// in -> input data,
// - the first bit is write/read_B
// - the next lognw bits describe the location,
// - the last wl the word to write
// data -> the data saved in the flip flop, sized wl x nw
export template<pint lognw,wl,N_dly_cfg>
defproc register_w (avMx1of2<1+lognw+wl> in; d1of<wl> data[1<<lognw]; power supply; bool? reset_B,reset_mem_B,dly_cfg[N_dly_cfg]){
bool _in_v_temp,_in_a_temp,_clock_temp,_clock,_clock_temp_inv;
pint nw = 1<<lognw;
//Validation of the input
vtree<1+lognw+wl> val_input(.in = in.d,.out = _in_v_temp, .supply = supply);
sigbuf_1output<4> val_input_X(.in = _in_v_temp,.out = in.v,.supply = supply);
// Generation of the fake clock pulse (inverted because the ff clocks are low_active)
delayprog<N_dly_cfg> clk_dly(.in = _in_v_temp, .out = _clock_temp,.s = dly_cfg, .supply = supply);
INV_X1 inv_clk(.a = _clock_temp,.y = _clock_temp_inv,.vdd = supply.vdd,.vss = supply.vss);
sigbuf_1output<4> clk_X(.in = _clock_temp,.out = _clock,.supply = supply);
// Sending back to the ackowledge
delayprog<N_dly_cfg> ack_dly(.in = _clock_temp_inv, .out = _in_a_temp,.s = dly_cfg, .supply = supply);
sigbuf_1output<4> ack_input_X(.in = _in_a_temp,.out = in.a,.supply = supply);
//Reset Buffers
bool _reset_BX,_reset_mem_BX,_reset_mem_BXX[nw*wl];
BUF_X1 reset_buf_BX(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
BUF_X1 reset_buf_BXX(.a=reset_mem_B, .y=_reset_mem_BX,.vdd=supply.vdd,.vss=supply.vss);
sigbuf<nw*wl> reset_bufarray(.in=_reset_mem_BX, .out=_reset_mem_BXX,.supply=supply);
// Creating the different flip flop arrays
bool _out_encoder[nw],_clock_word_temp[nw],_clock_word[nw],_clock_buffer_out[nw*wl];
andtree<lognw> atree[nw];
AND2_X1 and_encoder[nw];
sigbuf<wl> clock_buffer[nw];
DFFQ_R_X1 ff[nw*wl];
pint bitval;
(k:nw:atree[k].supply = supply;)
(word_idx:nw:
// Decoding the bit pattern to understand which word we are looking at
(pin_idx:lognw:
bitval = (word_idx & ( 1 << pin_idx )) >> pin_idx; // Get binary digit of integer i, column j
[bitval = 1 ->
atree[word_idx].in[pin_idx] = in.d.d[pin_idx+wl].t;
[] bitval = 0 ->
atree[word_idx].in[pin_idx] = in.d.d[pin_idx+wl].f;
[]bitval >= 2 -> {false : "fuck"};
]
)
// Activating the fake clock for the right word
atree[word_idx].out = _out_encoder[word_idx];
and_encoder[word_idx].a = _out_encoder[word_idx];
and_encoder[word_idx].b = _clock;
and_encoder[word_idx].y = _clock_word_temp[word_idx];
and_encoder[word_idx].vdd = supply.vdd;
and_encoder[word_idx].vss = supply.vss;
clock_buffer[word_idx].in = _clock_word_temp[word_idx];
clock_buffer[word_idx].supply = supply;
// Describing all the FF and their connection
(bit_idx:wl:
ff[bit_idx+word_idx*(wl)].clk_B = clock_buffer[word_idx].out[bit_idx];
ff[bit_idx+word_idx*(wl)].d = in.d.d[bit_idx].t;
ff[bit_idx+word_idx*(wl)].q = data[word_idx].d[bit_idx];
ff[bit_idx+word_idx*(wl)].reset_B = _reset_mem_BXX[bit_idx+word_idx*(wl)];
ff[bit_idx+word_idx*(wl)].vdd = supply.vdd;
ff[bit_idx+word_idx*(wl)].vss = supply.vss;
)
)
}
// Circuit for storing and reading registers using AER
// The block has the parameters:
// lognw -> log2(number of words), parameters you can store
// wl -> word length, length of each word
// N_dly_cfg -> the number of config bits in the ACK delay line
// The block has the pins:
// in -> input data,
// - the MSB is write/read_B
// - the next MSB bits (size lognw) are the location,
// - the LSB (size wl) are the word to write
// out -> in case a reading phase is required, the output is used to show the stored data
// - the MSB bits (size lognw) tell the read register
// - the LSB bits (size wl) tell the word read
// data -> the data saved in the flip flop, sized wl x nw
export template<pint lognw,wl,N_dly_cfg>
defproc register_rw (avMx1of2<1+lognw+wl> in; avMx1of2<lognw+wl> out; d1of<wl> data[1<<lognw]; power supply; bool? reset_B,reset_mem_B,dly_cfg[N_dly_cfg]){
pint nw = 1<<lognw;
bool _in_v_temp,_in_a_temp,_clock_temp,_clock[nw],_clock_temp_inv, _in_a_write, _in_a_read;
//Validation of the input
vtree<1+lognw+wl> val_input(.in = in.d,.out = _in_v_temp, .supply = supply);
sigbuf_1output<12> val_input_X(.in = _in_v_temp,.out = in.v,.supply = supply);
// Acknowledgment
OR2_X1 ack_readwrite(.a = _in_a_write,.b = _in_a_read,.y = _in_a_temp,.vdd = supply.vdd,.vss = supply.vss);
sigbuf_1output<12> ack_input_X(.in = _in_a_temp,.out = in.a,.supply = supply);
// WRITE
// Generation of the fake clock pulse if write is HIGH (inverted because the ff clocks are low_active)
bool _in_v_temp_write;
AND2_X1 clk_switch(.a = _in_v_temp,.b = in.d.d[lognw+wl].f, .y = _in_v_temp_write,.vdd = supply.vdd,.vss = supply.vss);
delayprog<N_dly_cfg> clk_dly(.in = _in_v_temp_write, .out = _clock_temp,.s = dly_cfg, .supply = supply);
INV_X1 inv_clk(.a = _clock_temp,.y = _clock_temp_inv,.vdd = supply.vdd,.vss = supply.vss);
sigbuf<nw> clk_X(.in = _clock_temp_inv,.out = _clock,.supply = supply);
sigbuf<wl> clock_buffer[nw];
bool _clock_word_temp[nw],_clock_word[nw],_clock_buffer_out[nw*wl];
// Sending back to the ackowledge
bool _in_a_write_temp;
delayprog<N_dly_cfg> ack_dly(.in = _clock_temp, .out = _in_a_write_temp,.s = dly_cfg, .supply = supply);
AND2_X1 ack_write_and(.a = in.d.d[lognw+wl].f,.b = _in_a_write_temp,.y = _in_a_write,.vdd = supply.vdd, .vss = supply.vss);
// READ
//Outputing the word to read
AND2_X1 word_to_read[nw];
sigbuf<wl*2> word_to_read_X[nw];
ortree<nw> bitselector_t[wl];
ortree<nw> bitselector_f[wl];
AND2_X1 word_selector_t[nw*wl];
AND2_X1 word_selector_f[nw*wl];
bool _out_word_to_read[2*nw*wl];
buffer_s<lognw+wl> output_buf(.out = out,.supply = supply, .reset_B = reset_B);
AND2_X1 address_propagator_f[lognw],address_propagator_t[lognw];
// Outputting the address if the read is true
(i:lognw:
address_propagator_t[i].a = in.d.d[lognw+wl].t;
address_propagator_t[i].b = in.d.d[i+wl].t;
address_propagator_t[i].y = output_buf.in.d.d[i+wl].t;
address_propagator_t[i].vdd = supply.vdd;
address_propagator_t[i].vss = supply.vss;
address_propagator_f[i].a = in.d.d[lognw+wl].t;
address_propagator_f[i].b = in.d.d[i+wl].f;
address_propagator_f[i].y = output_buf.in.d.d[i+wl].f;
address_propagator_f[i].vdd = supply.vdd;
address_propagator_f[i].vss = supply.vss;
)
AND2_X1 ack_read_and(.a = in.d.d[lognw+wl].t,.b = output_buf.in.a,.y = _in_a_read,.vdd = supply.vdd, .vss = supply.vss);
//Reset Buffers
bool _reset_BX, _reset_BXX[nw],_reset_mem_BX,_reset_mem_BXX[nw*wl];
BUF_X1 reset_buf_BX(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
BUF_X1 reset_buf_BXX(.a=reset_mem_B, .y=_reset_mem_BX,.vdd=supply.vdd,.vss=supply.vss);
sigbuf<nw*wl> reset_mem_bufarray(.in=_reset_mem_BX, .out=_reset_mem_BXX,.supply=supply);
sigbuf<nw> reset_bufarray(.in=_reset_BX, .out=_reset_BXX,.supply=supply);
//Creating the encoder
andtree<lognw> atree[nw];
OR2_X1 or_encoder[nw];
INV_X1 inv_encoder[nw];
// Creating the different flip flop arrays
bool _out_encoder[nw];
DFFQ_R_X1 ff[nw*wl];
// For loop for assigning the different components
pint bitval;
(k:nw:atree[k].supply = supply;)
(word_idx:nw:
// Decoding the bit pattern to understand which word we are looking at
(pin_idx:lognw:
bitval = (word_idx & ( 1 << pin_idx )) >> pin_idx; // Get binary digit of integer i, column j
[bitval = 1 ->
atree[word_idx].in[pin_idx] = in.d.d[pin_idx+wl].t;
[] bitval = 0 ->
atree[word_idx].in[pin_idx] = in.d.d[pin_idx+wl].f;
[]bitval >= 2 -> {false : "fuck"};
]
)
// WRITE: Activating the fake clock for the right word
atree[word_idx].out = _out_encoder[word_idx];
inv_encoder[word_idx].a = _out_encoder[word_idx];
inv_encoder[word_idx].y = or_encoder[word_idx].a;
inv_encoder[word_idx].vdd = supply.vdd;
inv_encoder[word_idx].vss = supply.vss;
or_encoder[word_idx].b = _clock[word_idx];
or_encoder[word_idx].y = _clock_word_temp[word_idx];
or_encoder[word_idx].vdd = supply.vdd;
or_encoder[word_idx].vss = supply.vss;
clock_buffer[word_idx].in = _clock_word_temp[word_idx];
clock_buffer[word_idx].supply = supply;
// READ: Selecting the right word to read if read is high
word_to_read[word_idx].a = in.d.d[lognw+wl].t;
word_to_read[word_idx].b = _out_encoder[word_idx];
word_to_read[word_idx].y = word_to_read_X[word_idx].in;
word_to_read[word_idx].vdd = supply.vdd;
word_to_read[word_idx].vss = supply.vss;
word_to_read_X[word_idx].supply = supply;
(bit_idx:wl:
// Describing all the FF and their connection
ff[bit_idx+word_idx*(wl)].clk_B = clock_buffer[word_idx].out[bit_idx];
ff[bit_idx+word_idx*(wl)].d = in.d.d[bit_idx].t;
ff[bit_idx+word_idx*(wl)].q = data[word_idx].d[bit_idx];
ff[bit_idx+word_idx*(wl)].reset_B = _reset_mem_BXX[bit_idx+word_idx*(wl)];
ff[bit_idx+word_idx*(wl)].vdd = supply.vdd;
ff[bit_idx+word_idx*(wl)].vss = supply.vss;
// READ: creating the selectors for propagating the right word
word_to_read_X[word_idx].out[bit_idx] = word_selector_t[bit_idx+word_idx*(wl)].a;
word_to_read_X[word_idx].out[bit_idx+wl] = word_selector_f[bit_idx+word_idx*(wl)].a;
word_selector_t[bit_idx+word_idx*(wl)].b = ff[bit_idx+word_idx*(wl)].q;
word_selector_t[bit_idx+word_idx*(wl)].y = bitselector_t[bit_idx].in[word_idx];
word_selector_f[bit_idx+word_idx*(wl)].b = ff[bit_idx+word_idx*(wl)].q_B;
word_selector_f[bit_idx+word_idx*(wl)].y = bitselector_f[bit_idx].in[word_idx];
bitselector_t[bit_idx].out = output_buf.in.d.d[bit_idx].t;
bitselector_f[bit_idx].out = output_buf.in.d.d[bit_idx].f;
bitselector_t[bit_idx].supply = supply;
bitselector_f[bit_idx].supply = supply;
)
)
}
}}