644 lines
28 KiB
Plaintext
644 lines
28 KiB
Plaintext
/*************************************************************************
|
|
*
|
|
* This file is part of ACT dataflow neuro library
|
|
*
|
|
* Copyright (c) 2022 University of Groningen - Ole Richter
|
|
* Copyright (c) 2022 University of Groningen - Michele Mastella
|
|
* Copyright (c) 2022 University of Groningen - Hugh Greatorex
|
|
* Copyright (c) 2022 University of Groningen - Madison Cotteret
|
|
*
|
|
*
|
|
* This source describes Open Hardware and is licensed under the CERN-OHL-W v2 or later
|
|
*
|
|
* You may redistribute and modify this documentation and make products
|
|
* using it under the terms of the CERN-OHL-W v2 (https:/cern.ch/cern-ohl).
|
|
* This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED
|
|
* WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-W v2
|
|
* for applicable conditions.
|
|
*
|
|
* Source location: https://git.web.rug.nl/bics/actlib_dataflow_neuro
|
|
*
|
|
* As per CERN-OHL-W v2 section 4.1, should You produce hardware based on
|
|
* these sources, You must maintain the Source Location visible in its
|
|
* documentation.
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
import "../../dataflow_neuro/cell_lib_async.act";
|
|
import "../../dataflow_neuro/cell_lib_std.act";
|
|
import "../../dataflow_neuro/treegates.act";
|
|
// import tmpl::dataflow_neuro;
|
|
// import tmpl::dataflow_neuro;
|
|
import std::channel;
|
|
open std::channel;
|
|
|
|
namespace tmpl {
|
|
namespace dataflow_neuro {
|
|
|
|
// @ole talk to rajit, we use valid the wrong way arround according to stdlib
|
|
template<pbool reset; pint V; pint M>
|
|
defchan gen_avMx1of2 <: chan(int<M>) (std::data::Mx1of2?!<M> d; bool!? a; bool!? v)
|
|
{
|
|
{ 0 <= V & std::ceil_log2(V) < M : "Initial token value out of range" };
|
|
|
|
methods {
|
|
/*-- initialize channel, sender end --*/
|
|
send_init {
|
|
[ reset -> (,i:M: [ ((V >> i) & 1) = 0 -> d.d[i].f+ [] else -> d.d[i].t+ ]);[v]
|
|
[] else -> (,i:M: d.d[i].t-,d.d[i].f-);[~v]
|
|
]
|
|
}
|
|
|
|
/*-- set output data --*/
|
|
set {
|
|
(,i:M: [((self >> i) & 1) = 0 -> d.d[i].f+ [] else -> d.d[i].t+ ]);[v]
|
|
}
|
|
|
|
/*-- finish synchronization --*/
|
|
send_up {
|
|
[a]
|
|
}
|
|
|
|
/*-- reset part of the protocol --*/
|
|
send_rest {
|
|
(,i:M: d.d[i].t-,d.d[i].f-);[~v],[~a]
|
|
}
|
|
|
|
/*-- initialize channel, receiver end --*/
|
|
recv_init {
|
|
v-;a-
|
|
}
|
|
|
|
/*-- get value --*/
|
|
get {
|
|
[(&i:M: d.d[i].t | d.d[i].f)];
|
|
self := 0;
|
|
(;i:M: [ d.d[i].t -> self := self | (1 << i)
|
|
[] else -> skip
|
|
]
|
|
)
|
|
}
|
|
|
|
/*-- finish synchronization action --*/
|
|
recv_up {
|
|
v+,a+
|
|
}
|
|
|
|
/*-- reset part of the protocol --*/
|
|
recv_rest {
|
|
[(&i:M:~d.d[i].t & ~d.d[i].f)];v-,a-
|
|
}
|
|
|
|
/*-- probe expression on receiver --*/
|
|
// i think this deadlocks with recv_up
|
|
recv_probe = v;
|
|
|
|
// no sender probe
|
|
}
|
|
}
|
|
export defchan avMx1of2 <: gen_avMx1of2<false,0> () { }
|
|
export defchan avrMx1of2 <: gen_avMx1of2<true,0> () { }
|
|
|
|
|
|
/**
|
|
* the buffer template gives you a standart buffer of bitwidth N
|
|
*
|
|
*/
|
|
export template<pint N>
|
|
defproc buffer (avMx1of2<N> in; avMx1of2<N> out; bool? reset_B; power supply) {
|
|
//control
|
|
bool _en, _reset_BX,_reset_BXX[N];
|
|
A_3C_RB_X4 inack_ctl(.c1=_en,.c2=in.v,.c3=out.v,.y=in.a,.pr_B=_reset_BX,.sr_B=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
A_1C1P_X1 en_ctl(.c1=in.a,.p1=out.v,.y=_en,.vdd=supply.vdd,.vss=supply.vss);
|
|
|
|
|
|
BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
sigbuf<N> reset_bufarray(.in=_reset_BX, .out=_reset_BXX);
|
|
|
|
//validity
|
|
bool _in_v;
|
|
vtree<N> vc(.in=in.d,.out=_in_v,.supply=supply);
|
|
BUF_X4 in_v_buf(.a=_in_v, .y=in.v,.vdd=supply.vdd,.vss=supply.vss);
|
|
|
|
//function
|
|
bool _out_a_BX_t[N],_out_a_BX_f[N],_out_a_B,_en_X_t[N],_en_X_f[N];
|
|
A_2C1N_RB_X4 f_buf_func[N];
|
|
A_2C1N_RB_X4 t_buf_func[N];
|
|
sigbuf<N> en_buf_t(.in=_en, .out=_en_X_t, .supply=supply);
|
|
sigbuf<N> en_buf_f(.in=_en, .out=_en_X_f, .supply=supply);
|
|
INV_X1 out_a_inv(.a=out.a,.y=_out_a_B);
|
|
sigbuf<N> out_a_B_buf_f(.in=_out_a_B,.out=_out_a_BX_t);
|
|
sigbuf<N> out_a_B_buf_t(.in=_out_a_B,.out=_out_a_BX_f);
|
|
// check if you can also do single var to array connect a=b[N]
|
|
// and remove them from the loop
|
|
(i:N:
|
|
f_buf_func[i].y=out.d.d[i].f;
|
|
t_buf_func[i].y=out.d.d[i].t;
|
|
f_buf_func[i].c1=_en_X_f[i];
|
|
t_buf_func[i].c1=_en_X_t[i];
|
|
f_buf_func[i].c2=_out_a_BX_f[i];
|
|
t_buf_func[i].c2=_out_a_BX_t[i];
|
|
f_buf_func[i].n1=in.d.d[i].f;
|
|
t_buf_func[i].n1=in.d.d[i].t;
|
|
f_buf_func[i].vdd=supply.vdd;
|
|
t_buf_func[i].vdd=supply.vdd;
|
|
f_buf_func[i].vss=supply.vss;
|
|
t_buf_func[i].vss=supply.vss;
|
|
t_buf_func[i].pr_B = _reset_BXX[i];
|
|
t_buf_func[i].sr_B = _reset_BXX[i];
|
|
f_buf_func[i].pr_B = _reset_BXX[i];
|
|
f_buf_func[i].sr_B = _reset_BXX[i];
|
|
)
|
|
}
|
|
|
|
/**
|
|
* Buffer_S template.
|
|
* S maybe stands for special.
|
|
* Like a buffer, except that the output function block does not load the data in
|
|
* until the input data is valid.
|
|
* Not entirely sure what the point of it is,
|
|
* Ole says is useful for funky timing scenarios.
|
|
*/
|
|
export template<pint N>
|
|
defproc buffer_s (avMx1of2<N> in; avMx1of2<N> out; bool? reset_B; power supply) {
|
|
//control
|
|
bool _en, _reset_BX,_reset_BXX[N];
|
|
A_3C_RB_X4 inack_ctl(.c1=_en,.c2=in.v,.c3=out.v,.y=in.a,.pr_B=_reset_BX,.sr_B=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
A_1C1P_X1 en_ctl(.c1=in.a,.p1=out.v,.y=_en,.vdd=supply.vdd,.vss=supply.vss);
|
|
|
|
|
|
BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
sigbuf<N> reset_bufarray(.in=_reset_BX, .out=_reset_BXX);
|
|
|
|
//validity
|
|
bool _in_v, _in_vX[N];
|
|
vtree<N> vc(.in=in.d,.out=_in_v,.supply=supply);
|
|
BUF_X4 in_v_buf4(.a=_in_v, .y=in.v,.vdd=supply.vdd,.vss=supply.vss);
|
|
sigbuf<N> in_v_bufN(.in = in.v, .out = _in_vX, .supply = supply);
|
|
|
|
//function
|
|
bool _out_a_BX_t[N],_out_a_BX_f[N],_out_a_B,_en_X_t[N],_en_X_f[N];
|
|
A_2C2N_RB_X4 f_buf_func[N];
|
|
A_2C2N_RB_X4 t_buf_func[N];
|
|
sigbuf<N> en_buf_t(.in=_en, .out=_en_X_t, .supply=supply);
|
|
sigbuf<N> en_buf_f(.in=_en, .out=_en_X_f, .supply=supply);
|
|
INV_X1 out_a_inv(.a=out.a,.y=_out_a_B);
|
|
sigbuf<N> out_a_B_buf_f(.in=_out_a_B,.out=_out_a_BX_t);
|
|
sigbuf<N> out_a_B_buf_t(.in=_out_a_B,.out=_out_a_BX_f);
|
|
// check if you can also do single var to array connect a=b[N]
|
|
// and remove them from the loop
|
|
(i:N:
|
|
f_buf_func[i].y=out.d.d[i].f;
|
|
t_buf_func[i].y=out.d.d[i].t;
|
|
f_buf_func[i].c1=_en_X_f[i];
|
|
t_buf_func[i].c1=_en_X_t[i];
|
|
f_buf_func[i].c2=_out_a_BX_f[i];
|
|
t_buf_func[i].c2=_out_a_BX_t[i];
|
|
f_buf_func[i].n1=in.d.d[i].f;
|
|
t_buf_func[i].n1=in.d.d[i].t;
|
|
f_buf_func[i].n2=_in_vX[i];
|
|
t_buf_func[i].n2=_in_vX[i];
|
|
f_buf_func[i].vdd=supply.vdd;
|
|
t_buf_func[i].vdd=supply.vdd;
|
|
f_buf_func[i].vss=supply.vss;
|
|
t_buf_func[i].vss=supply.vss;
|
|
t_buf_func[i].pr_B = _reset_BXX[i];
|
|
t_buf_func[i].sr_B = _reset_BXX[i];
|
|
f_buf_func[i].pr_B = _reset_BXX[i];
|
|
f_buf_func[i].sr_B = _reset_BXX[i];
|
|
)
|
|
}
|
|
|
|
export template<pint N>
|
|
defproc demux (avMx1of2<N> in; avMx1of2<N> out1; avMx1of2<N> out2; bool? reset_B; avMx1of2<1> cond; power supply) {
|
|
//control
|
|
bool _en, _reset_BX,_reset_BXX[2*N], _out_v, _in_c_v_;
|
|
|
|
OR2_X1 out_or(.a=out1.v, .b=out2.v, .y=_out_v,.vdd=supply.vdd,.vss=supply.vss);
|
|
A_3C_RB_X4 inack_ctl(.c1=_en,.c2=_in_c_v_,.c3= _out_v,.y=in.a,.pr_B=_reset_BX,.sr_B=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
A_1C1P_X1 en_ctl(.c1=in.a,.p1=_out_v,.y=_en,.vdd=supply.vdd,.vss=supply.vss);
|
|
BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
sigbuf<2*N> reset_bufarray(.in=_reset_BX, .out=_reset_BXX);
|
|
//validity
|
|
bool _in_v, _c_f_buf[N], _c_t_buf[N], _c_v;
|
|
|
|
sigbuf<N> c_buf_t(.in=cond.d.d[0].t, .out=_c_t_buf);
|
|
sigbuf<N> c_buf_f(.in=cond.d.d[0].f, .out=_c_f_buf);
|
|
|
|
OR2_X1 c_f_c_t_or(.a=cond.d.d[0].t, .b=cond.d.d[0].f, .y=_c_v,.vdd=supply.vdd,.vss=supply.vss);
|
|
vtree<N> vc(.in=in.d,.out=_in_v,.supply=supply);
|
|
|
|
A_2C_B_X1 c_el(.c1=_c_v, .c2=_in_v, .y=_in_c_v_,.vdd=supply.vdd,.vss=supply.vss);
|
|
BUF_X4 in_v_buf(.a=_in_v, .y=in.v,.vdd=supply.vdd,.vss=supply.vss);
|
|
|
|
|
|
//function
|
|
//func buffer out1
|
|
bool _out1_a_BX_t[N],_out1_a_BX_f[N],_out1_a_B,_en1_X_t[N],_en1_X_f[N];
|
|
A_2C2N_RB_X4 out1_f_buf_func[N];
|
|
A_2C2N_RB_X4 out1_t_buf_func[N];
|
|
sigbuf<N> out1_en_buf_t(.in=_en, .out=_en1_X_t, .supply=supply);
|
|
sigbuf<N> out1_en_buf_f(.in=_en, .out=_en1_X_f, .supply=supply);
|
|
INV_X1 out1_a_inv(.a=out1.a,.y=_out1_a_B);
|
|
sigbuf<N> out1_a_B_buf_f(.in=_out1_a_B,.out=_out1_a_BX_t);
|
|
sigbuf<N> out1_a_B_buf_t(.in=_out1_a_B,.out=_out1_a_BX_f);
|
|
(i:N:
|
|
out1_f_buf_func[i].y=out1.d.d[i].f;
|
|
out1_t_buf_func[i].y=out1.d.d[i].t;
|
|
out1_f_buf_func[i].c1=_en1_X_f[i];
|
|
out1_t_buf_func[i].c1=_en1_X_t[i];
|
|
out1_f_buf_func[i].c2=_out1_a_BX_f[i];
|
|
out1_t_buf_func[i].c2=_out1_a_BX_t[i];
|
|
out1_f_buf_func[i].n1=in.d.d[i].f;
|
|
out1_t_buf_func[i].n1=in.d.d[i].t;
|
|
out1_f_buf_func[i].vdd=supply.vdd;
|
|
out1_t_buf_func[i].vdd=supply.vdd;
|
|
out1_f_buf_func[i].vss=supply.vss;
|
|
out1_t_buf_func[i].vss=supply.vss;
|
|
out1_t_buf_func[i].pr_B = _reset_BXX[i];
|
|
out1_t_buf_func[i].sr_B = _reset_BXX[i];
|
|
out1_f_buf_func[i].pr_B = _reset_BXX[i];
|
|
out1_f_buf_func[i].sr_B = _reset_BXX[i];
|
|
out1_f_buf_func[i].n2=_c_t_buf[i];
|
|
out1_t_buf_func[i].n2=_c_t_buf[i];
|
|
)
|
|
|
|
//func buffer out2
|
|
bool _out2_a_BX_t[N],_out2_a_BX_f[N],_out2_a_B,_en2_X_t[N],_en2_X_f[N];
|
|
A_2C2N_RB_X4 out2_f_buf_func[N];
|
|
A_2C2N_RB_X4 out2_t_buf_func[N];
|
|
sigbuf<N> out2_en_buf_t(.in=_en, .out=_en2_X_t, .supply=supply);
|
|
sigbuf<N> out2_en_buf_f(.in=_en, .out=_en2_X_f, .supply=supply);
|
|
INV_X1 out2_a_inv(.a=out2.a,.y=_out2_a_B);
|
|
sigbuf<N> out2_a_B_buf_f(.in=_out2_a_B,.out=_out2_a_BX_t);
|
|
sigbuf<N> out2_a_B_buf_t(.in=_out2_a_B,.out=_out2_a_BX_f);
|
|
(i:N:
|
|
out2_f_buf_func[i].y=out2.d.d[i].f;
|
|
out2_t_buf_func[i].y=out2.d.d[i].t;
|
|
out2_f_buf_func[i].c1=_en2_X_f[i];
|
|
out2_t_buf_func[i].c1=_en2_X_t[i];
|
|
out2_f_buf_func[i].c2=_out2_a_BX_f[i];
|
|
out2_t_buf_func[i].c2=_out2_a_BX_t[i];
|
|
out2_f_buf_func[i].n1=in.d.d[i].f;
|
|
out2_t_buf_func[i].n1=in.d.d[i].t;
|
|
out2_f_buf_func[i].vdd=supply.vdd;
|
|
out2_t_buf_func[i].vdd=supply.vdd;
|
|
out2_f_buf_func[i].vss=supply.vss;
|
|
out2_t_buf_func[i].vss=supply.vss;
|
|
out2_t_buf_func[i].pr_B = _reset_BXX[i+N-1];
|
|
out2_t_buf_func[i].sr_B = _reset_BXX[i+N-1];
|
|
out2_f_buf_func[i].pr_B = _reset_BXX[i+N-1];
|
|
out2_f_buf_func[i].sr_B = _reset_BXX[i+N-1];
|
|
out2_f_buf_func[i].n2=_c_f_buf[i];
|
|
out2_t_buf_func[i].n2=_c_f_buf[i];
|
|
)
|
|
}
|
|
|
|
export template<pint N>
|
|
defproc fork (avMx1of2<N> in; avMx1of2<N> out1; avMx1of2<N> out2 ; bool? reset_B; power supply) {
|
|
|
|
// control
|
|
bool _en, _reset_BX,_reset_BXX[N*2];
|
|
A_4C_RB_X4 inack_ctl(.c1=_en,.c2=in.v,.c3=out1.v,.c4=out2.v,.y=in.a,.pr_B=_reset_BX,.sr_B=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
A_1C2P_X1 en_ctl(.c1=in.a,.p1=out1.v,.p2=out2.v,.y=_en,.vdd=supply.vdd,.vss=supply.vss);
|
|
|
|
|
|
//reset_buffers
|
|
BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
sigbuf<N*2> reset_bufarray(.in=_reset_BX, .out=_reset_BXX);
|
|
|
|
|
|
//validity
|
|
bool _in_v;
|
|
vtree<N> vc(.in=in.d,.out=_in_v,.supply=supply);
|
|
BUF_X4 in_v_buf(.a=_in_v, .y=in.v,.vdd=supply.vdd,.vss=supply.vss);
|
|
|
|
//function
|
|
//func buffer out1
|
|
bool _out1_a_BX_t[N],_out1_a_BX_f[N],_out1_a_B,_en1_X_t[N],_en1_X_f[N];
|
|
A_2C1N_RB_X4 out1_f_buf_func[N];
|
|
A_2C1N_RB_X4 out1_t_buf_func[N];
|
|
sigbuf<N> out1_en_buf_t(.in=_en, .out=_en1_X_t, .supply=supply);
|
|
sigbuf<N> out1_en_buf_f(.in=_en, .out=_en1_X_f, .supply=supply);
|
|
INV_X1 out1_a_inv(.a=out1.a,.y=_out1_a_B);
|
|
sigbuf<N> out1_a_B_buf_f(.in=_out1_a_B,.out=_out1_a_BX_t);
|
|
sigbuf<N> out1_a_B_buf_t(.in=_out1_a_B,.out=_out1_a_BX_f);
|
|
(i:N:
|
|
out1_f_buf_func[i].y=out1.d.d[i].f;
|
|
out1_t_buf_func[i].y=out1.d.d[i].t;
|
|
out1_f_buf_func[i].c1=_en1_X_f[i];
|
|
out1_t_buf_func[i].c1=_en1_X_t[i];
|
|
out1_f_buf_func[i].c2=_out1_a_BX_f[i];
|
|
out1_t_buf_func[i].c2=_out1_a_BX_t[i];
|
|
out1_f_buf_func[i].n1=in.d.d[i].f;
|
|
out1_t_buf_func[i].n1=in.d.d[i].t;
|
|
out1_f_buf_func[i].vdd=supply.vdd;
|
|
out1_t_buf_func[i].vdd=supply.vdd;
|
|
out1_f_buf_func[i].vss=supply.vss;
|
|
out1_t_buf_func[i].vss=supply.vss;
|
|
out1_t_buf_func[i].pr_B = _reset_BXX[i];
|
|
out1_t_buf_func[i].sr_B = _reset_BXX[i];
|
|
out1_f_buf_func[i].pr_B = _reset_BXX[i];
|
|
out1_f_buf_func[i].sr_B = _reset_BXX[i];
|
|
)
|
|
//func buffer out2
|
|
bool _out2_a_BX_t[N],_out2_a_BX_f[N],_out2_a_B,_en2_X_t[N],_en2_X_f[N];
|
|
A_2C1N_RB_X4 out2_f_buf_func[N];
|
|
A_2C1N_RB_X4 out2_t_buf_func[N];
|
|
sigbuf<N> out2_en_buf_t(.in=_en, .out=_en2_X_t, .supply=supply);
|
|
sigbuf<N> out2_en_buf_f(.in=_en, .out=_en2_X_f, .supply=supply);
|
|
INV_X1 out2_a_inv(.a=out2.a,.y=_out2_a_B);
|
|
sigbuf<N> out2_a_B_buf_f(.in=_out2_a_B,.out=_out2_a_BX_t);
|
|
sigbuf<N> out2_a_B_buf_t(.in=_out2_a_B,.out=_out2_a_BX_f);
|
|
(i:N:
|
|
out2_f_buf_func[i].y=out2.d.d[i].f;
|
|
out2_t_buf_func[i].y=out2.d.d[i].t;
|
|
out2_f_buf_func[i].c1=_en2_X_f[i];
|
|
out2_t_buf_func[i].c1=_en2_X_t[i];
|
|
out2_f_buf_func[i].c2=_out2_a_BX_f[i];
|
|
out2_t_buf_func[i].c2=_out2_a_BX_t[i];
|
|
out2_f_buf_func[i].n1=in.d.d[i].f;
|
|
out2_t_buf_func[i].n1=in.d.d[i].t;
|
|
out2_f_buf_func[i].vdd=supply.vdd;
|
|
out2_t_buf_func[i].vdd=supply.vdd;
|
|
out2_f_buf_func[i].vss=supply.vss;
|
|
out2_t_buf_func[i].vss=supply.vss;
|
|
out2_t_buf_func[i].pr_B = _reset_BXX[i+N-1];
|
|
out2_t_buf_func[i].sr_B = _reset_BXX[i+N-1];
|
|
out2_f_buf_func[i].pr_B = _reset_BXX[i+N-1];
|
|
out2_f_buf_func[i].sr_B = _reset_BXX[i+N-1];
|
|
)
|
|
}
|
|
|
|
|
|
// export template<pint N, pbool invout>
|
|
// defproc demux_td (avMx1of2<N> in; avMx1of2<N> out1; avMx1of2<1> token; bool? reset_B; avMx1of2<1> cond; power supply) {
|
|
// //control
|
|
// bool _en, _reset_BX,_reset_BXX[2*N], _out_v, _in_c_v_;
|
|
|
|
// OR2_X1 out_or(.a=out1.v, .b=out2.v, .y=_out_v,.vdd=supply.vdd,.vss=supply.vss);
|
|
// A_3C_RB_X4 inack_ctl(.c1=_en,.c2=_in_c_v_,.c3= _out_v,.y=in.a,.pr_B=_reset_BX,.sr_B=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
// A_1C1P_X1 en_ctl(.c1=in.a,.p1=_out_v,.y=_en,.vdd=supply.vdd,.vss=supply.vss);
|
|
// BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
// sigbuf<2*N> reset_bufarray(.in=_reset_BX, .out=_reset_BXX);
|
|
// //validity
|
|
// bool _in_v, _c_f_buf[N], _c_t_buf[N], _c_v;
|
|
|
|
// sigbuf<N> c_buf_t(.in=cond.d.d[0].t, .out=_c_t_buf);
|
|
// sigbuf<N> c_buf_f(.in=cond.d.d[0].f, .out=_c_f_buf);
|
|
|
|
|
|
// //orientation of condition
|
|
// [ invout < 0 ->
|
|
// OR2_X1 c_f_c_t_or(.a=cond.d.d[0].t, .b=cond.d.d[0].f, .y=_c_v,.vdd=supply.vdd,.vss=supply.vss);
|
|
// [] invout > 0 ->
|
|
// OR2_X1 c_f_c_t_or(.a=cond.d.d[0].f, .b=cond.d.d[0].t, .y=_c_v,.vdd=supply.vdd,.vss=supply.vss);
|
|
// ]
|
|
|
|
// vtree<N> vc(.in=in.d,.out=_in_v,.supply=supply);
|
|
|
|
// A_2C_B_X1 c_el(.c1=_c_v, .c2=_in_v, .y=_in_c_v_,.vdd=supply.vdd,.vss=supply.vss);
|
|
// BUF_X4 in_v_buf(.a=_in_v, .y=in.v,.vdd=supply.vdd,.vss=supply.vss);
|
|
|
|
|
|
// //function
|
|
// //func buffer out1
|
|
// bool _out1_a_BX_t[N],_out1_a_BX_f[N],_out1_a_B,_en1_X_t[N],_en1_X_f[N];
|
|
// A_2C2N_RB_X4 out1_f_buf_func[N];
|
|
// A_2C2N_RB_X4 out1_t_buf_func[N];
|
|
// sigbuf<N> out1_en_buf_t(.in=_en, .out=_en1_X_t, .supply=supply);
|
|
// sigbuf<N> out1_en_buf_f(.in=_en, .out=_en1_X_f, .supply=supply);
|
|
// INV_X1 out1_a_inv(.a=out1.a,.y=_out1_a_B);
|
|
// sigbuf<N> out1_a_B_buf_f(.in=_out1_a_B,.out=_out1_a_BX_t);
|
|
// sigbuf<N> out1_a_B_buf_t(.in=_out1_a_B,.out=_out1_a_BX_f);
|
|
// (i:N:
|
|
// out1_f_buf_func[i].y=out1.d.d[i].f;
|
|
// out1_t_buf_func[i].y=out1.d.d[i].t;
|
|
// out1_f_buf_func[i].c1=_en1_X_f[i];
|
|
// out1_t_buf_func[i].c1=_en1_X_t[i];
|
|
// out1_f_buf_func[i].c2=_out1_a_BX_f[i];
|
|
// out1_t_buf_func[i].c2=_out1_a_BX_t[i];
|
|
// out1_f_buf_func[i].n1=in.d.d[i].f;
|
|
// out1_t_buf_func[i].n1=in.d.d[i].t;
|
|
// out1_f_buf_func[i].vdd=supply.vdd;
|
|
// out1_t_buf_func[i].vdd=supply.vdd;
|
|
// out1_f_buf_func[i].vss=supply.vss;
|
|
// out1_t_buf_func[i].vss=supply.vss;
|
|
// out1_t_buf_func[i].pr_B = _reset_BXX[i];
|
|
// out1_t_buf_func[i].sr_B = _reset_BXX[i];
|
|
// out1_f_buf_func[i].pr_B = _reset_BXX[i];
|
|
// out1_f_buf_func[i].sr_B = _reset_BXX[i];
|
|
// out1_f_buf_func[i].n2=_c_t_buf[i];
|
|
// out1_t_buf_func[i].n2=_c_t_buf[i];
|
|
// )
|
|
|
|
// //token out
|
|
|
|
// A_2C2N_RB_X4 token_buf;
|
|
|
|
// token_buf.y = ;
|
|
// token_buf.c1 = ;
|
|
// token_buf.c2 = ;
|
|
// token_buf.n1 = ;
|
|
// token_buf.n2 = ;
|
|
// token_buf.vdd = supply.vdd;
|
|
// token_buf.vss = supply.vss;
|
|
// token_buf.pr_B ;
|
|
// token_buf.sr_b ;
|
|
// }
|
|
export
|
|
defproc arbiter_handshake(a1of1 in1; a1of1 in2; a1of1 out; power supply)
|
|
{
|
|
bool _y1_arb,_y2_arb;
|
|
|
|
A_2C_B_X1 ack_cell1(.c1 = out.a,.c2 = _y1_arb,.y = in1.a,.vdd = supply.vdd, .vss = supply.vss);
|
|
A_2C_B_X1 ack_cell2(.c1 = out.a,.c2 = _y2_arb,.y = in2.a,.vdd = supply.vdd, .vss = supply.vss);
|
|
OR2_X1 or_cell(.a = _y1_arb, .b = _y2_arb, .y = out.r,.vdd = supply.vdd, .vss = supply.vss);
|
|
ARBITER arbiter(.a = in1.r, .b = in2.r, .c = in2.a, .d = in1.a, .y1 = _y1_arb, .y2 = _y2_arb, .vdd = supply.vdd, .vss = supply.vss);
|
|
|
|
}
|
|
//The buffer_t_valid doesn't work
|
|
export
|
|
defproc buffer_t_valid(a1of1 in; a1of1 out; bool? reset_B; power supply)
|
|
{
|
|
//control
|
|
bool _en, _reset_BX;
|
|
A_3C_RB_X4 inack_ctl(.c1=_en,.c2=in.r,.c3=out.r,.y=in.a,.pr_B=_reset_BX,.sr_B=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
A_1C1P_X1 en_ctl(.c1=in.a,.p1=out.r,.y=_en,.vdd=supply.vdd,.vss=supply.vss);
|
|
|
|
//function
|
|
bool _out_a_B;
|
|
INV_X1 inv_outa(.a = out.a,.y=_out_a_B,.vdd = supply.vdd,.vss=supply.vss);
|
|
A_2C1N_RB_X4 buf_func(.c1 = _en,.c2 = _out_a_B, .n1 = in.r,.y = out.r, .pr_B = _reset_BX, .sr_B = _reset_BX,.vdd = supply.vdd,.vss=supply.vss);
|
|
|
|
|
|
//reset buffers
|
|
BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
}
|
|
|
|
export template<pint N>
|
|
defproc merge (avMx1of2<N> in1; avMx1of2<N> in2; avMx1of2<N> out ; bool? reset_B; power supply) {
|
|
|
|
//out acknowledge sigbuffer and inverter
|
|
bool _out_a_B,_out_a_BX[2*N];
|
|
INV_X1 out_a_inverter(.a = out.a, .y = _out_a_B);
|
|
sigbuf<2*N> out_a_buffer(.in = _out_a_B,.out = _out_a_BX,.supply=supply);
|
|
|
|
//control
|
|
bool _in1_a_B,_in2_a_B,_en,_en_X[2*N], _reset_BX,_reset_BXX[2*N];
|
|
bool _in1_arb,_in2_arb,_in1_arb_X[2*N],_in2_arb_X[2*N];
|
|
A_4C_RB_X4 in1ack_ctl(.c1=_in1_arb,.c2=_en,.c3=in1.v,.c4=out.v,.y=in1.a,.pr_B=_reset_BX,.sr_B=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
A_4C_RB_X4 in2ack_ctl(.c1=_in2_arb,.c2=_en,.c3=in2.v,.c4=out.v,.y=in2.a,.pr_B=_reset_BX,.sr_B=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
A_4P1N1N_X1 en_ctl(.p1 = in1.a,.p2=in2.a,.p3=out.a,.p4 = out.v, .n1 = in1.a,.n2 = in2.a,.y = _en,.vdd=supply.vdd,.vss=supply.vss);
|
|
sigbuf<2*N> en_buffer(.in = _en,.out = _en_X,.supply=supply);
|
|
INV_X1 in1ack_ctl_inv(.a=in1.a,.y=_in1_a_B,.vdd=supply.vdd,.vss=supply.vss);
|
|
INV_X1 in2ack_ctl_inv(.a=in2.a,.y=_in2_a_B,.vdd=supply.vdd,.vss=supply.vss);
|
|
|
|
//reset_buffers
|
|
BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
sigbuf<N*2> reset_bufarray(.in=_reset_BX, .out=_reset_BXX);
|
|
|
|
//validity
|
|
a1of1 _in1_temp,_in2_temp,_out_temp;
|
|
bool _in1_arb_temp,_in2_arb_temp;
|
|
vtree<N> vc1(.in=in1.d,.out=in1.v,.supply=supply);
|
|
vtree<N> vc2(.in=in2.d,.out=in2.v,.supply=supply);
|
|
arbiter_handshake validity_arb(.in1 = _in1_temp,.in2 = _in2_temp,.out =_out_temp, .supply = supply);
|
|
_in1_temp.r = in1.v;
|
|
_in2_temp.r = in2.v;
|
|
_in1_temp.a = _in1_arb_temp;
|
|
_in2_temp.a = _in2_arb_temp;
|
|
_out_temp.r = _out_temp.a;
|
|
AND2_X1 AND_arb1(.a = _in2_a_B,.b = _in1_arb_temp, .y = _in1_arb);
|
|
AND2_X1 AND_arb2(.a = _in1_a_B,.b = _in2_arb_temp, .y = _in2_arb);
|
|
sigbuf<2*N> arb2function1(.in = _in1_arb,.out = _in1_arb_X,.supply=supply);
|
|
sigbuf<2*N> arb2function2(.in = _in2_arb,.out = _in2_arb_X,.supply=supply);
|
|
|
|
//function
|
|
A_2C2N2N_RB_X1 merge_func_t[N];
|
|
A_2C2N2N_RB_X1 merge_func_f[N];
|
|
(i:N:
|
|
merge_func_t[i].c1 = _en_X[i];
|
|
merge_func_t[i].c2 = _out_a_BX[i];
|
|
merge_func_t[i].n1 = _in1_arb_X[i];
|
|
merge_func_t[i].n2 = in1.d.d[i].t;
|
|
merge_func_t[i].n3 = _in2_arb_X[i];
|
|
merge_func_t[i].n4 = in2.d.d[i].t;
|
|
merge_func_t[i].y = out.d.d[i].t;
|
|
merge_func_t[i].vdd=supply.vdd;
|
|
merge_func_t[i].vss=supply.vss;
|
|
merge_func_t[i].pr_B = _reset_BXX[i];
|
|
merge_func_t[i].sr_B = _reset_BXX[i];
|
|
|
|
merge_func_f[i].c1 = _en_X[i+N];
|
|
merge_func_f[i].c2 = _out_a_BX[i+N];
|
|
merge_func_f[i].n1 = _in1_arb_X[i+N];
|
|
merge_func_f[i].n2 = in1.d.d[i].f;
|
|
merge_func_f[i].n3 = _in2_arb_X[i+N];
|
|
merge_func_f[i].n4 = in2.d.d[i].f;
|
|
merge_func_f[i].y = out.d.d[i].f;
|
|
merge_func_f[i].vdd=supply.vdd;
|
|
merge_func_f[i].vss=supply.vss;
|
|
merge_func_f[i].pr_B = _reset_BXX[i+N];
|
|
merge_func_f[i].sr_B = _reset_BXX[i+N];
|
|
)
|
|
}
|
|
|
|
export
|
|
defproc buffer_t(a1of1 in; a1of1 out; bool? reset_B; power supply)
|
|
{
|
|
//control
|
|
bool _en, _reset_BX;
|
|
A_2C1N_RB_X4 inack_ctl(.c1=_en,.c2=in.r,.n1=out.r,.y=in.a,.pr_B=_reset_BX,.sr_B=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
A_1C1P_X1 en_ctl(.c1=in.a,.p1=out.r,.y=_en,.vdd=supply.vdd,.vss=supply.vss);
|
|
|
|
//function
|
|
bool _out_a_B;
|
|
INV_X1 inv_outa(.a = out.a,.y=_out_a_B,.vdd = supply.vdd,.vss=supply.vss);
|
|
A_2C1N_RB_X4 buf_func(.c1 = _en,.c2 = _out_a_B, .n1 = in.r,.y = out.r, .pr_B = _reset_BX, .sr_B = _reset_BX,.vdd = supply.vdd,.vss=supply.vss);
|
|
|
|
|
|
//reset buffers
|
|
BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
}
|
|
export template<pint N>
|
|
defproc fifo_t(a1of1 in; a1of1 out; bool? reset_B; power supply)
|
|
{
|
|
buffer_t fifo_element[N];
|
|
bool _reset_BXX[N];
|
|
fifo_element[0].in.r = in.r;
|
|
fifo_element[0].in.a = in.a;
|
|
fifo_element[0].supply = supply;
|
|
fifo_element[0].reset_B = _reset_BXX[0];
|
|
(i:1..N-1:
|
|
fifo_element[i].in.r = fifo_element[i-1].out.r;
|
|
fifo_element[i].in.a = fifo_element[i-1].out.a;
|
|
fifo_element[i].supply = supply;
|
|
fifo_element[i].reset_B = _reset_BXX[i];
|
|
)
|
|
fifo_element[N-1].out.r = out.r;
|
|
fifo_element[N-1].out.a = out.a;
|
|
|
|
// reset buffers
|
|
bool _reset_BX;
|
|
BUF_X1 reset_buf(.a=reset_B, .y=_reset_BX,.vdd=supply.vdd,.vss=supply.vss);
|
|
sigbuf<N> reset_bufarray(.in=_reset_BX, .out=_reset_BXX);
|
|
}
|
|
|
|
// Programmable delay line.
|
|
// N is the number of layers,
|
|
// the longest layer having 2**N DLY elements
|
|
export template<pint N>
|
|
defproc delayprog (bool! out; bool? in, s[N]; power supply)
|
|
{
|
|
|
|
{ N >= 0 : "What?" };
|
|
{ N < 10 : "Delay prog size is given in 2**N. Given N is ridiculous." };
|
|
|
|
|
|
AND2_X1 and2[N];
|
|
MUX2_X1 mu2[N];
|
|
DLY4_X1 dly[(1<<N) -1];
|
|
|
|
bool _a[N+1]; // Holds the input to each row
|
|
|
|
_a[0] = in;
|
|
|
|
pint i_delay;
|
|
i_delay = 0; // Index of the last connected delay element
|
|
|
|
(i:0..N-1:
|
|
// For each row
|
|
and2[i].a = _a[i];
|
|
and2[i].b = s[i];
|
|
|
|
// Delays
|
|
dly[i_delay].a = and2[i].y;
|
|
i_delay = i_delay + 1;
|
|
(j:1..i-1:
|
|
dly[i_delay].a = dly[i_delay-1].y;
|
|
i_delay = i_delay +1;
|
|
)
|
|
|
|
// Mux
|
|
mu2[i].a = _a[i];
|
|
mu2[i].s = s[i];
|
|
dly[i_delay-1].y = mu2[i].b;
|
|
_a[i+1] = mu2[i].y;
|
|
)
|
|
|
|
out = mu2[N-1].y;
|
|
|
|
|
|
// Connect everything to vdd/gnd
|
|
(i:N:and2[i].vdd = supply.vdd;)
|
|
(i:N:mu2[i].vdd = supply.vdd;)
|
|
(i:((1<<N)-1):dly[i].vdd = supply.vdd;)
|
|
|
|
(i:N:and2[i].vss = supply.vss;)
|
|
(i:N:mu2[i].vss = supply.vss;)
|
|
(i:((1<<N)-1):dly[i].vss = supply.vss;)
|
|
}
|
|
}}
|