actlib_dataflow_neuro/test/unit_tests/texel_in30/test.act

117 lines
3.5 KiB
Plaintext

/*************************************************************************
*
* This file is part of ACT dataflow neuro library.
* It's the testing facility for cell_lib_std.act
*
* Copyright (c) 2022 University of Groningen - Ole Richter
* Copyright (c) 2022 University of Groningen - Hugh Greatorex
* Copyright (c) 2022 University of Groningen - Michele Mastella
* Copyright (c) 2022 University of Groningen - Madison Cotteret
*
* This source describes Open Hardware and is licensed under the CERN-OHL-W v2 or later
*
* You may redistribute and modify this documentation and make products
* using it under the terms of the CERN-OHL-W v2 (https:/cern.ch/cern-ohl).
* This documentation is distributed WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY, INCLUDING OF MERCHANTABILITY, SATISFACTORY QUALITY
* AND FITNESS FOR A PARTICULAR PURPOSE. Please see the CERN-OHL-W v2
* for applicable conditions.
*
* Source location: https://git.web.rug.nl/bics/actlib_dataflow_neuro
*
* As per CERN-OHL-W v2 section 4.1, should You produce hardware based on
* these sources, You must maintain the Source Location visible in its
* documentation.
*
**************************************************************************
*/
import "../../dataflow_neuro/coders.act";
import "../../dataflow_neuro/primitives.act";
import "../../dataflow_neuro/chips.act";
import globals;
import std::data;
open std::data;
open tmpl::dataflow_neuro;
defproc chip_texel_in30 (bd<30> in; bd<30> out; Mx1of2<22> reg_data[64];
bool? nrn_mon_x[4], nrn_mon_y[8], syn_mon_x[4], syn_mon_y[8];
bool? bd_dly_cfg[4], bd_dly_cfg2[2], loopback_en){
bool _reset_B;
prs {
Reset => _reset_B-
}
power supply;
supply.vdd = Vdd;
supply.vss = GND;
pint N_IN = 30;
pint N_NRN_X = 4;
pint N_NRN_Y = 8;
// pint NC_NRN_X = std:ceil_log2(N_NRN_X);
// pint NC_NRN_Y = std:ceil_log2(N_NRN_Y);
pint NC_NRN_X = 2;
pint NC_NRN_Y = 3;
pint N_SYN_X = 4;
pint N_SYN_Y = 8;
// pint NC_SYN_X = std:ceil_log2(N_SYN_X);
// pint NC_SYN_Y = std:ceil_log2(N_SYN_Y);
pint NC_SYN_X = 2;
pint NC_SYN_Y = 3;
pint N_SYN_DLY_CFG = 4;
pint N_BD_DLY_CFG = 4;
pint N_BD_DLY_CFG2 = 2;
pint N_NRN_MON_X = 4;
pint N_NRN_MON_Y = 8;
pint N_SYN_MON_X = 4;
pint N_SYN_MON_Y = 8;
pint N_BUFFERS = 3;
pint N_LINE_PD_DLY = 3;
pint REG_NCA = 6;
pint REG_M = 1<<REG_NCA;
pint REG_NCW = 22;
chip_texel<N_IN,
N_NRN_X, N_NRN_Y, N_SYN_X, N_SYN_Y,
NC_NRN_X, NC_NRN_Y, NC_SYN_X, NC_SYN_Y,
N_SYN_DLY_CFG,
N_NRN_MON_X, N_NRN_MON_Y, N_SYN_MON_X, N_SYN_MON_Y,
N_BUFFERS,
N_LINE_PD_DLY,
N_BD_DLY_CFG, N_BD_DLY_CFG2,
REG_NCA, REG_NCW, REG_M> c(.in = in, .out = out, .reg_data = reg_data,
.nrn_mon_x = nrn_mon_x, .nrn_mon_y = nrn_mon_y,
.syn_mon_x = syn_mon_x, .syn_mon_y = syn_mon_y,
.bd_dly_cfg = bd_dly_cfg, .bd_dly_cfg2 = bd_dly_cfg2, .loopback_en = loopback_en,
.reset_B = _reset_B, .supply = supply);
// Spawn in some buffers as a conduit between neurons and synapses.
pint N_SYNS = N_SYN_X * N_SYN_Y;
BUF_X4 syn2nrns_r[N_SYNS];
BUF_X4 syn2nrns_a[N_SYNS];
(i:N_SYNS:
syn2nrns_r[i].a = c.synapses[i].r;
syn2nrns_r[i].y = c.neurons[i].r;
syn2nrns_a[i].a = c.neurons[i].a;
syn2nrns_a[i].y = c.synapses[i].a;
)
// c.synapses = c.neurons; // Connect each synapse hs to a neuron hs
}
// fifo_decoder_neurons_encoder_fifo e;
chip_texel_in30 c;