rozen-test is added.

master
yemaozi88 4 years ago
parent de5c9cecb9
commit 82a8e2302f

Binary file not shown.

@ -36,6 +36,9 @@
<Compile Include="fa_test.py">
<SubType>Code</SubType>
</Compile>
<Compile Include="forced_aligner_comparison.py">
<SubType>Code</SubType>
</Compile>
<Compile Include="novoapi_forced_alignment.py">
<SubType>Code</SubType>
</Compile>

@ -10,14 +10,13 @@ import shutil
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
import novoapi
import defaultfiles as default
sys.path.append(default.forced_alignment_module_dir)
from forced_alignment import pyhtk, convert_phone_set
from forced_alignment import convert_phone_set
#import acoustic_model_functions as am_func
import convert_xsampa2ipa
import novoapi_functions
@ -47,10 +46,6 @@ david_suggestion = ['ɔː', 'ɪː', 'iː', 'œː', 'ɛː', 'w']
## read pronunciation variants.
stimmen_transcription_ = pd.ExcelFile(default.stimmen_transcription_xlsx)
df = pd.read_excel(stimmen_transcription_, 'frequency')
#for xsampa, ipa in zip(df['X-SAMPA'], df['IPA']):
# ipa_converted = convert_xsampa2ipa.xsampa2ipa(mapping, xsampa)
# if not ipa_converted == ipa:
# print('{0}: {1} - {2}'.format(xsampa, ipa_converted, ipa))
transcription_ipa = list(df['IPA'])
# transcription mistake?
@ -63,6 +58,7 @@ for ipa in transcription_ipa:
ipa = ipa.replace(':', 'ː')
ipa = convert_phone_set.split_ipa(ipa)
# list of phones not in novo70 phoneset.
not_in_novo70_ = [phone for phone in ipa
if not phone in phoneset_ipa and not phone in david_suggestion]
not_in_novo70_ = [phone.replace('sp', '') for phone in not_in_novo70_]
@ -106,6 +102,10 @@ df = pd.read_excel(stimmen_transcription_, 'original')
# mapping from ipa to xsampa
mapping = convert_xsampa2ipa.load_converter('xsampa', 'ipa', default.ipa_xsampa_converter_dir)
#for xsampa, ipa in zip(df['X-SAMPA'], df['IPA']):
# ipa_converted = convert_xsampa2ipa.xsampa2ipa(mapping, xsampa)
# if not ipa_converted == ipa:
# print('{0}: {1} - {2}'.format(xsampa, ipa_converted, ipa))
ipas = []
famehtks = []
@ -153,12 +153,12 @@ for word in word_list:
## ===== forced alignment =====
reus_dir = r'C:\OneDrive\Desktop\Reus'
rozen_dir = r'c:\Users\Aki\source\repos\acoustic_model\rozen-test'
if forced_alignment_novo70:
Results = pd.DataFrame(index=[],
columns=['filename', 'word', 'xsampa', 'ipa', 'result_ipa', 'result_novo70', 'llh'])
#for word in word_list:
for word in ['Reus']:
for word in ['Rozen']:
# pronunciation variants top 3
df_per_word_ = df_per_word[df_per_word['word']==word]
df_per_word_ = df_per_word_.sort_values('frequency', ascending=False)
@ -208,37 +208,35 @@ if forced_alignment_novo70:
wav_file = os.path.join(default.stimmen_wav_dir, filename)
if os.path.exists(wav_file):
# for Martijn
#shutil.copy(wav_file, os.path.join(reus_dir, filename))
pronunciation_ipa_ = [ipa.replace(':', 'ː') for ipa in pronunciation_ipa]
result = novoapi_functions.forced_alignment(wav_file, word, pronunciation_ipa_)
result_ipa, result_novo70, llh = novoapi_functions.result2pronunciation(result, word)
result_ = pd.Series([
sample['filename'],
sample['word'],
sample['xsampa'],
sample['ipa'],
' '.join(result_ipa),
' '.join(result_novo70),
llh
], index=results.columns)
results = results.append(result_, ignore_index = True)
print('{0}/{1}: answer {2} - prediction {3}'.format(
i+1, len(samples), result_['ipa'], result_['result_ipa']))
results.to_excel(os.path.join(reus_dir, 'results.xlsx'), encoding="utf-8")
if len(results) > 0:
Results = Results.append(results, ignore_index = True)
Results.to_excel(os.path.join(default.stimmen_dir, 'Results.xlsx'), encoding="utf-8")
shutil.copy(wav_file, os.path.join(rozen_dir, filename))
# pronunciation_ipa_ = [ipa.replace(':', 'ː') for ipa in pronunciation_ipa]
# result = novoapi_functions.forced_alignment(wav_file, word, pronunciation_ipa_)
# result_ipa, result_novo70, llh = novoapi_functions.result2pronunciation(result, word)
# result_ = pd.Series([
# sample['filename'],
# sample['word'],
# sample['xsampa'],
# sample['ipa'],
# ' '.join(result_ipa),
# ' '.join(result_novo70),
# llh
# ], index=results.columns)
# results = results.append(result_, ignore_index = True)
# print('{0}/{1}: answer {2} - prediction {3}'.format(
# i+1, len(samples), result_['ipa'], result_['result_ipa']))
# #results.to_excel(os.path.join(default.stimmen_dir, 'results.xlsx'), encoding="utf-8")
#if len(results) > 0:
# Results = Results.append(results, ignore_index = True)
#Results.to_excel(os.path.join(default.stimmen_result_novoapi_dir, 'Results.xlsx'), encoding="utf-8")
else:
Results_xlsx = pd.ExcelFile(os.path.join(default.stimmen_dir, 'Results.xlsx'), encoding="utf-8")
Results_xlsx = pd.ExcelFile(os.path.join(default.stimmen_result_novoapi_dir, 'Results.xlsx'), encoding="utf-8")
Results = pd.read_excel(Results_xlsx, 'Sheet1')
## ===== analysis =====
#result_novoapi_dir = os.path.join(default.stimmen_dir, 'result', 'novoapi')
#for word in word_list:
# if not word == 'Oog':
# Results_ = Results[Results['word'] == word]
# y_true = list(Results_['ipa'])
# y_pred_ = [ipa.replace(' ', '') for ipa in list(Results_['result_ipa'])]
@ -249,4 +247,4 @@ else:
# plt.figure()
# output_confusion_matrix.plot_confusion_matrix(cm, pronunciation_variants, normalize=False)
# #plt.show()
# plt.savefig(os.path.join(result_novoapi_dir, word + '.png'))
# plt.savefig(os.path.join(default.stimmen_result_novoapi_dir, word + '.png'))

@ -43,6 +43,7 @@ stimmen_data_dir = os.path.join(stimmen_dir, 'data')
#stimmen_wav_dir = os.path.join(stimmen_dir, 'wav')
# 16 kHz
stimmen_wav_dir = r'c:\OneDrive\WSL\kaldi-trunk\egs\fame\s5\corpus\stimmen'
stimmen_result_novoapi_dir = os.path.join(stimmen_dir, 'result', 'novoapi')
stimmen_transcription_xlsx = os.path.join(stimmen_data_dir, 'Frisian Variants Picture Task Stimmen.xlsx')
phonelist_friesian_txt = os.path.join(experiments_dir, 'friesian', 'acoustic_model', 'config', 'phonelist_friesian.txt')

@ -0,0 +1,10 @@
import os
os.chdir(r'C:\Users\Aki\source\repos\acoustic_model\acoustic_model')
import defaultfiles as default
wav_dir = r'c:\Users\Aki\source\repos\acoustic_model\reus-test'
wav_files = ['reus1008-reus.wav',
'reus1167-man.wav',
'reus3768-mantsje.wav']

@ -7,7 +7,7 @@ import json
from novoapi.backend import session
import os
os.chdir(r'C:\Users\Aki\source\repos\acoustic_model\acoustic_model')
#os.chdir(r'C:\Users\Aki\source\repos\acoustic_model\acoustic_model')
import defaultfiles as default

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

@ -0,0 +1,119 @@
#!/usr/bin/env python
import os
os.chdir(r'C:\Users\Aki\source\repos\acoustic_model\acoustic_model')
import argparse
import json
from novoapi.backend import session
p = argparse.ArgumentParser()
p.add_argument("--user", default='martijn.wieling')
p.add_argument("--password", default='xxxxx')
args = p.parse_args()
rec = session.Recognizer(grammar_version="1.0", lang="nl", snodeid=101, user=args.user, password=args.password, keepopen=True)
grammar = {
"type": "confusion_network",
"version": "1.0",
"data": {
"kind": "sequence",
"elements": [
{
"kind": "word",
"pronunciation": [
{
"phones": [
"r",
"eu0",
"s"
],
"id": 0
}
,
{
"phones": [
"m",
"a0",
"n"
],
"id": 1
}
,
{
"phones": [
"m",
"a0",
"n",
"t",
"s",
"y",
"ax"
],
"id": 2
}
],
"label": "reus"
}
]
},
"return_objects": [
"grammar"
],
"phoneset": "novo70"
}
res = rec.setgrammar(grammar)
#print "Set grammar result", res
## === novoapi/backend/session.py ===
#import wave
#import time
#from novoapi.backend.session import rpcid, segmentation
#wavf = "reus1008-reus.wav"
#w = wave.open(wavf, 'r')
#nchannels, sampwidth, framerate, nframes, comptype, compname = w.getparams()
#buf = w.readframes(nframes)
#w.close()
#buffer_size = 4096
#nbytes_sent = 0
#start = time.time()
#for j in range(0, len(buf), buffer_size):
# audio_packet = buf[j:j + buffer_size]
# nbytes_sent += len(audio_packet)
# rec.conn.send_binary(audio_packet)
#rec.conn.send(json.dumps({"jsonrpc": "2.0", "method": "get_result", "id": rpcid.next()}))
#print(rpcid.next())
#rec.last_message = rec.conn.recv()
#message = json.loads(rec.last_message)
#result = session.segmentation(message["result"]["words"])
#result.export()
## ====================================
def result2pronunciation(result, word):
#result_ = res.export()[1]
result_ = [result[i] for i in range(len(result)) if result[i]['label'] == word]
llh = result_[0]['llh']
phones = result_[0]['phones']
pronunciation = [phone['label'] for phone in phones]
return pronunciation, llh
res = rec.recognize_wav("reus1008-reus.wav")
#print "\n\n\nThe pronounced word in reus1008-reus.wav is: REUS\n\n"
#print "Recognition result:", json.dumps(res.export(), indent=4)
result2pronunciation(res.export(), 'reus')
#print "\n\n\nThe pronounced word in reus1167-man.wav is: MAN\n\n"
res2 = rec.recognize_wav("reus1167-man.wav")
#print "Recognition result:", json.dumps(res2.export(), indent=4)
result2pronunciation(res2.export(), 'reus')
#print "\n\n\nThe pronounced word in reus3768-mantsje.wav is: MANTSJE\n\n"
res3 = rec.recognize_wav("reus3768-mantsje.wav")
#print "Recognition result:", json.dumps(res3.export(), indent=4)
result2pronunciation(res3.export(), 'reus')
Loading…
Cancel
Save