FA result evaluation and xsampa to ipa conversion is updated.

This commit is contained in:
yemaozi88 2018-06-21 16:27:00 +02:00
parent 5fb05ddab2
commit d56ef7f075
3 changed files with 209 additions and 72 deletions

Binary file not shown.

View File

@ -22,11 +22,11 @@ dataset_list = ['devel', 'test', 'train']
extract_features = 0
make_feature_list = 0
conv_lexicon = 0
check_lexicon = 0
check_lexicon = 1
make_mlf = 0
combine_files = 0
flat_start = 0
train_model = 1
train_model = 0
forced_alignment = 0
@ -133,7 +133,11 @@ if check_lexicon:
print("==== check if all the phones are successfully converted. ====\n")
# the phones used in the lexicon.
phonelist = am_func.get_phonelist(lex_htk)
phonelist_asr = am_func.get_phonelist(lex_asr)
phonelist_oov = am_func.get_phonelist(lex_oov)
phonelist_htk = am_func.get_phonelist(lex_htk)
phonelist = phonelist_asr.union(phonelist_oov)
# the lines which include a specific phone.
lines = am_func.find_phone(lex_asr, 'g')

View File

@ -3,19 +3,54 @@ import sys
import csv
import subprocess
import configparser
from collections import Counter
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
## ======================= user define =======================
## ======================= functions =======================
def read_fileFA(fileFA):
"""
read the result file of HTK forced alignment.
this function only works when input is one word.
"""
with open(fileFA, 'r') as f:
lines = f.read()
lines = lines.split('\n')
phones = []
for line in lines:
line_split = line.split()
if len(line_split) > 1:
phones.append(line_split[2])
return ' '.join(phones)
#####################
## USER DEFINE ##
#####################
curr_dir = r'C:\Users\Aki\source\repos\acoustic_model\acoustic_model'
config_ini = curr_dir + '\\config.ini'
forced_alignment_module = r'C:\Users\Aki\source\repos\forced_alignment'
forced_alignment_module = r'C:\Users\Aki\source\repos\forced_alignment'
forced_alignment_module_old = r'C:\OneDrive\Research\rug\code\forced_alignment\forced_alignment'
ipa_xsampa_converter_dir = r'C:\Users\Aki\source\repos\ipa-xsama-converter'
csvfile = r"C:\OneDrive\Research\rug\stimmen\Frisian Variants Picture Task Stimmen.csv"
experiments_dir = r'C:\OneDrive\Research\rug\experiments'
data_dir = experiments_dir + '\\stimmen\\data'
cygwin_dir = r'C:\cygwin64\home\Aki\acoustic_model'
# procedure
convert_phones = 0
make_dic_files = 0
make_dic_files_short = 0
do_forced_alignment = 0
eval_forced_alignment = 1
## ======================= add paths =======================
@ -28,6 +63,10 @@ sys.path.append(curr_dir)
import convert_xsampa2ipa
import acoustic_model_functions as am_func
# for forced-alignment
sys.path.append(forced_alignment_module_old)
import pyHTK
## ======================= load variables =======================
config = configparser.ConfigParser()
@ -40,85 +79,179 @@ lex_asr = FAME_dir + '\\lexicon\\lex.asr'
lex_asr_htk = FAME_dir + '\\lexicon\\lex.asr_htk'
## ======================= check phones included in FAME! =======================
# the phones used in the lexicon.
#phonelist = am_func.get_phonelist(lex_htk)
# the lines which include a specific phone.
#lines = am_func.find_phone(lex_asr, 'x')
## ======================= convert phones ======================
mapping = convert_xsampa2ipa.load_converter('xsampa', 'ipa', ipa_xsampa_converter_dir)
if convert_phones:
mapping = convert_xsampa2ipa.load_converter('xsampa', 'ipa', ipa_xsampa_converter_dir)
with open(csvfile, encoding="utf-8") as fin:
lines = csv.reader(fin, delimiter=';', lineterminator="\n", skipinitialspace=True)
next(lines, None) # skip the headers
## check phones included in FAME!
# the phones used in the lexicon.
#phonelist = am_func.get_phonelist(lex_htk)
filenames = []
words = []
pronunciations = []
for line in lines:
if line[1] is not '' and len(line) > 5:
filenames.append(line[0])
words.append(line[1])
pron_xsampa = line[3]
pron_ipa = convert_xsampa2ipa.conversion('xsampa', 'ipa', mapping, pron_xsampa)
pron_ipa = pron_ipa.replace('ː', ':')
pron_famehtk = convert_phone_set.ipa2famehtk(pron_ipa)
# the lines which include a specific phone.
#lines = am_func.find_phone(lex_asr, 'x')
with open(csvfile, encoding="utf-8") as fin:
lines = csv.reader(fin, delimiter=';', lineterminator="\n", skipinitialspace=True)
next(lines, None) # skip the headers
filenames = []
words = []
pronunciations = []
for line in lines:
if line[1] is not '' and len(line) > 5:
filenames.append(line[0])
words.append(line[1])
pron_xsampa = line[3]
pron_ipa = convert_xsampa2ipa.conversion('xsampa', 'ipa', mapping, pron_xsampa)
pron_ipa = pron_ipa.replace('ː', ':')
pron_famehtk = convert_phone_set.ipa2famehtk(pron_ipa)
# adjust to phones used in the acoustic model.
pron_famehtk = pron_famehtk.replace('sp', 'sil')
pron_famehtk = pron_famehtk.replace('ce :', 'ce') # because ceh is ignored.
pron_famehtk = pron_famehtk.replace('w :', 'wh')
pron_famehtk = pron_famehtk.replace('e :', 'eh')
pron_famehtk = pron_famehtk.replace('eh :', 'eh')
pron_famehtk = pron_famehtk.replace('ih :', 'ih')
# adjust to phones used in the acoustic model.
pron_famehtk = pron_famehtk.replace('sp', 'sil')
pron_famehtk = pron_famehtk.replace('ce :', 'ce') # because ceh is ignored.
pron_famehtk = pron_famehtk.replace('w :', 'wh')
pron_famehtk = pron_famehtk.replace('e :', 'eh')
pron_famehtk = pron_famehtk.replace('eh :', 'eh')
pron_famehtk = pron_famehtk.replace('ih :', 'ih')
#translation_key = {'sp': 'sil', 'ce :': 'ceh', 'w :': 'wh'}
#pron = []
#for phoneme in pron_famehtk.split(' '):
# pron.append(translation_key.get(phoneme, phoneme))
#pronunciations.append(' '.join(pron_famehtk))
pronunciations.append(pron_famehtk)
#translation_key = {'sp': 'sil', 'ce :': 'ceh', 'w :': 'wh'}
#pron = []
#for phoneme in pron_famehtk.split(' '):
# pron.append(translation_key.get(phoneme, phoneme))
#pronunciations.append(' '.join(pron_famehtk))
pronunciations.append(pron_famehtk)
filenames = np.array(filenames)
words = np.array(words)
pronunciations = np.array(pronunciations)
# check if all phones are in the phonelist of the acoustic model.
#phonelist = ' '.join(pronunciations)
#np.unique(phonelist.split(' '))
#phonelist.find(':')
del line, lines
del pron_xsampa, pron_ipa, pron_famehtk
filenames = np.array(filenames)
words = np.array(words)
pronunciations = np.array(pronunciations)
# check if all phones are in the phonelist of the acoustic model.
#phonelist = ' '.join(pronunciations)
#np.unique(phonelist.split(' '))
#phonelist.find(':')
del line, lines
del pron_xsampa, pron_ipa, pron_famehtk
# make dict files.
np.save(data_dir + '\\filenames.npy', filenames)
np.save(data_dir + '\\words.npy', words)
np.save(data_dir + '\\pronunciations.npy', pronunciations)
else:
filenames = np.load(data_dir + '\\filenames.npy')
words = np.load(data_dir + '\\words.npy')
pronunciations = np.load(data_dir + '\\pronunciations.npy')
word_list = np.unique(words)
word_id = 1
word = word_list[word_id]
## ======================= make dict files used for HTK. ======================
if make_dic_files:
output_dir = experiments_dir + r'\stimmen\dic'
for word in word_list:
WORD = word.upper()
fileDic = output_dir + '\\' + word + '.dic'
# make dic file.
pronvar_ = pronunciations[words == word]
pronvar = np.unique(pronvar_)
with open(fileDic, 'w') as f:
for pvar in pronvar:
f.write('{0}\t{1}\n'.format(WORD, pvar))
## ======================= make dict files for most popular words. ======================
if make_dic_files_short:
output_dir = experiments_dir + r'\stimmen\dic'
#word = word_list[3]
for word in word_list:
WORD = word.upper()
fileStat = output_dir + '\\' + word + '_stat.csv'
pronvar = pronunciations[words == word]
c = Counter(pronvar)
total_num = sum(c.values())
with open(fileStat, 'w') as f:
for key, value in c.items():
f.write('{0}\t{1:.2f}\t{2}\t{3}\n'.format(value, value/total_num*100, WORD, key))
## ======================= forced alignment =======================
#if forced_alignment:
# try:
# scripts.run_command([
# 'HVite','-T', '1', '-a', '-C', configHVite,
# '-H', AcousticModel, '-m', '-I',
# mlf_file, '-i', fa_file, '-S',
# script_file, htk_dict_file, filePhoneList
# ])
# except:
# print("\033[91mHVite command failed with these input files:\033[0m")
# print(_debug_show_file('HVite config', configHVite))
# print(_debug_show_file('Accoustic model', AcousticModel))
# print(_debug_show_file('Master Label file', mlf_file))
# print(_debug_show_file('Output', fa_file))
# print(_debug_show_file('Script file', script_file))
# print(_debug_show_file('HTK dictionary', htk_dict_file))
# print(_debug_show_file('Phoneme list', filePhoneList))
# raise
if do_forced_alignment:
configHVite = cygwin_dir + r'\config\config.HVite'
filePhoneList = experiments_dir + r'\friesian\acoustic_model\config\phonelist_friesian.txt'
wav_dir = experiments_dir + r'\stimmen\wav'
#for hmm_num in [1, 2, 4, 8, 16, 32, 64, 128]:
for hmm_num in [64]:
hmm_num_str = str(hmm_num)
AcousticModel = experiments_dir + r'\friesian\acoustic_model\model\hmm' + hmm_num_str + r'-3\hmmdefs'
predictions = []
file_num_max = len(filenames)
for i in range(0, file_num_max):
print('=== {0}/{1} ==='.format(i, file_num_max))
filename = filenames[i]
fileWav = wav_dir + '\\' + filename
if os.path.exists(fileWav):
word = words[i]
WORD = word.upper()
# make label file.
fileLab = wav_dir + '\\' + filename.replace('.wav', '.lab')
with open(fileLab, 'w') as f:
lines = f.write(WORD)
fileDic = experiments_dir + r'\stimmen\dic_short' + '\\' + word + '.dic'
fileFA = experiments_dir + r'\stimmen\FA_short' + '\\' + filename.replace('.wav', '.txt') + hmm_num_str
pyHTK.doHVite(fileWav, fileLab, fileDic, fileFA, configHVite, filePhoneList, AcousticModel)
prediction = read_fileFA(fileFA)
predictions.append(prediction)
os.remove(fileLab)
print('{0}: {1} -> {2}'.format(WORD, pronunciations[i], prediction))
else:
predictions.append('')
print('!!!!! file not found.')
predictions = np.array(predictions)
match = np.c_[words[predictions != ''], pronunciations[predictions != ''], predictions[predictions != '']]
np.save(data_dir + '\\match_hmm' + hmm_num_str + '.npy', match)
##os.remove(hcopy_scp.name)
## ======================= evaluate the result of forced alignment =======================
if eval_forced_alignment:
#for hmm_num in [1, 2, 4, 8, 16, 32, 64]:
hmm_num = 64
hmm_num_str = str(hmm_num)
match = np.load(data_dir + '\\match_hmm' + hmm_num_str + '.npy')
# use dic_short?
if 1:
pronunciation_variants = np.array(['WORD', 'pronunciation']).reshape(1, 2)
for word in word_list:
fileDic = experiments_dir + r'\stimmen\dic_short' + '\\' + word + '.dic'
pronunciation_variants = np.r_[pronunciation_variants, pyHTK.loadHTKdic(fileDic)]
match_short = []
for line in match:
word = line[0]
WORD = word.upper()
pronvar = pronunciation_variants[pronunciation_variants[:, 0] == word.upper(), 1]
if line[1] in pronvar:
match_short.append(line)
match_short = np.array(match_short)
match = np.copy(match_short)
# number of match
total_match = sum(match[:, 1] == match[:, 2])
print("{}: {}/{}".format(hmm_num_str, total_match, match.shape[0]))