FA result evaluation and xsampa to ipa conversion is updated.
This commit is contained in:
parent
5fb05ddab2
commit
d56ef7f075
Binary file not shown.
@ -22,11 +22,11 @@ dataset_list = ['devel', 'test', 'train']
|
||||
extract_features = 0
|
||||
make_feature_list = 0
|
||||
conv_lexicon = 0
|
||||
check_lexicon = 0
|
||||
check_lexicon = 1
|
||||
make_mlf = 0
|
||||
combine_files = 0
|
||||
flat_start = 0
|
||||
train_model = 1
|
||||
train_model = 0
|
||||
forced_alignment = 0
|
||||
|
||||
|
||||
@ -133,7 +133,11 @@ if check_lexicon:
|
||||
print("==== check if all the phones are successfully converted. ====\n")
|
||||
|
||||
# the phones used in the lexicon.
|
||||
phonelist = am_func.get_phonelist(lex_htk)
|
||||
phonelist_asr = am_func.get_phonelist(lex_asr)
|
||||
phonelist_oov = am_func.get_phonelist(lex_oov)
|
||||
phonelist_htk = am_func.get_phonelist(lex_htk)
|
||||
|
||||
phonelist = phonelist_asr.union(phonelist_oov)
|
||||
|
||||
# the lines which include a specific phone.
|
||||
lines = am_func.find_phone(lex_asr, 'g')
|
||||
|
@ -3,19 +3,54 @@ import sys
|
||||
import csv
|
||||
import subprocess
|
||||
import configparser
|
||||
from collections import Counter
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
## ======================= user define =======================
|
||||
## ======================= functions =======================
|
||||
|
||||
def read_fileFA(fileFA):
|
||||
"""
|
||||
read the result file of HTK forced alignment.
|
||||
this function only works when input is one word.
|
||||
"""
|
||||
with open(fileFA, 'r') as f:
|
||||
lines = f.read()
|
||||
lines = lines.split('\n')
|
||||
|
||||
phones = []
|
||||
for line in lines:
|
||||
line_split = line.split()
|
||||
if len(line_split) > 1:
|
||||
phones.append(line_split[2])
|
||||
|
||||
return ' '.join(phones)
|
||||
|
||||
|
||||
#####################
|
||||
## USER DEFINE ##
|
||||
#####################
|
||||
curr_dir = r'C:\Users\Aki\source\repos\acoustic_model\acoustic_model'
|
||||
config_ini = curr_dir + '\\config.ini'
|
||||
forced_alignment_module = r'C:\Users\Aki\source\repos\forced_alignment'
|
||||
forced_alignment_module_old = r'C:\OneDrive\Research\rug\code\forced_alignment\forced_alignment'
|
||||
ipa_xsampa_converter_dir = r'C:\Users\Aki\source\repos\ipa-xsama-converter'
|
||||
|
||||
csvfile = r"C:\OneDrive\Research\rug\stimmen\Frisian Variants Picture Task Stimmen.csv"
|
||||
experiments_dir = r'C:\OneDrive\Research\rug\experiments'
|
||||
data_dir = experiments_dir + '\\stimmen\\data'
|
||||
cygwin_dir = r'C:\cygwin64\home\Aki\acoustic_model'
|
||||
|
||||
# procedure
|
||||
convert_phones = 0
|
||||
make_dic_files = 0
|
||||
make_dic_files_short = 0
|
||||
do_forced_alignment = 0
|
||||
eval_forced_alignment = 1
|
||||
|
||||
|
||||
|
||||
## ======================= add paths =======================
|
||||
@ -28,6 +63,10 @@ sys.path.append(curr_dir)
|
||||
import convert_xsampa2ipa
|
||||
import acoustic_model_functions as am_func
|
||||
|
||||
# for forced-alignment
|
||||
sys.path.append(forced_alignment_module_old)
|
||||
import pyHTK
|
||||
|
||||
|
||||
## ======================= load variables =======================
|
||||
config = configparser.ConfigParser()
|
||||
@ -40,17 +79,17 @@ lex_asr = FAME_dir + '\\lexicon\\lex.asr'
|
||||
lex_asr_htk = FAME_dir + '\\lexicon\\lex.asr_htk'
|
||||
|
||||
|
||||
## ======================= check phones included in FAME! =======================
|
||||
## ======================= convert phones ======================
|
||||
if convert_phones:
|
||||
mapping = convert_xsampa2ipa.load_converter('xsampa', 'ipa', ipa_xsampa_converter_dir)
|
||||
|
||||
## check phones included in FAME!
|
||||
# the phones used in the lexicon.
|
||||
#phonelist = am_func.get_phonelist(lex_htk)
|
||||
|
||||
# the lines which include a specific phone.
|
||||
#lines = am_func.find_phone(lex_asr, 'x')
|
||||
|
||||
|
||||
## ======================= convert phones ======================
|
||||
mapping = convert_xsampa2ipa.load_converter('xsampa', 'ipa', ipa_xsampa_converter_dir)
|
||||
|
||||
with open(csvfile, encoding="utf-8") as fin:
|
||||
lines = csv.reader(fin, delimiter=';', lineterminator="\n", skipinitialspace=True)
|
||||
next(lines, None) # skip the headers
|
||||
@ -82,6 +121,11 @@ with open(csvfile, encoding="utf-8") as fin:
|
||||
#pronunciations.append(' '.join(pron_famehtk))
|
||||
pronunciations.append(pron_famehtk)
|
||||
|
||||
# check if all phones are in the phonelist of the acoustic model.
|
||||
#phonelist = ' '.join(pronunciations)
|
||||
#np.unique(phonelist.split(' '))
|
||||
#phonelist.find(':')
|
||||
|
||||
filenames = np.array(filenames)
|
||||
words = np.array(words)
|
||||
pronunciations = np.array(pronunciations)
|
||||
@ -89,36 +133,125 @@ pronunciations = np.array(pronunciations)
|
||||
del line, lines
|
||||
del pron_xsampa, pron_ipa, pron_famehtk
|
||||
|
||||
# check if all phones are in the phonelist of the acoustic model.
|
||||
#phonelist = ' '.join(pronunciations)
|
||||
#np.unique(phonelist.split(' '))
|
||||
#phonelist.find(':')
|
||||
np.save(data_dir + '\\filenames.npy', filenames)
|
||||
np.save(data_dir + '\\words.npy', words)
|
||||
np.save(data_dir + '\\pronunciations.npy', pronunciations)
|
||||
else:
|
||||
filenames = np.load(data_dir + '\\filenames.npy')
|
||||
words = np.load(data_dir + '\\words.npy')
|
||||
|
||||
# make dict files.
|
||||
pronunciations = np.load(data_dir + '\\pronunciations.npy')
|
||||
word_list = np.unique(words)
|
||||
word_id = 1
|
||||
word = word_list[word_id]
|
||||
|
||||
|
||||
## ======================= make dict files used for HTK. ======================
|
||||
if make_dic_files:
|
||||
output_dir = experiments_dir + r'\stimmen\dic'
|
||||
|
||||
for word in word_list:
|
||||
WORD = word.upper()
|
||||
fileDic = output_dir + '\\' + word + '.dic'
|
||||
|
||||
# make dic file.
|
||||
pronvar_ = pronunciations[words == word]
|
||||
pronvar = np.unique(pronvar_)
|
||||
|
||||
with open(fileDic, 'w') as f:
|
||||
for pvar in pronvar:
|
||||
f.write('{0}\t{1}\n'.format(WORD, pvar))
|
||||
|
||||
|
||||
## ======================= make dict files for most popular words. ======================
|
||||
if make_dic_files_short:
|
||||
output_dir = experiments_dir + r'\stimmen\dic'
|
||||
|
||||
#word = word_list[3]
|
||||
for word in word_list:
|
||||
WORD = word.upper()
|
||||
fileStat = output_dir + '\\' + word + '_stat.csv'
|
||||
|
||||
pronvar = pronunciations[words == word]
|
||||
c = Counter(pronvar)
|
||||
total_num = sum(c.values())
|
||||
|
||||
with open(fileStat, 'w') as f:
|
||||
for key, value in c.items():
|
||||
f.write('{0}\t{1:.2f}\t{2}\t{3}\n'.format(value, value/total_num*100, WORD, key))
|
||||
|
||||
|
||||
## ======================= forced alignment =======================
|
||||
#if forced_alignment:
|
||||
# try:
|
||||
# scripts.run_command([
|
||||
# 'HVite','-T', '1', '-a', '-C', configHVite,
|
||||
# '-H', AcousticModel, '-m', '-I',
|
||||
# mlf_file, '-i', fa_file, '-S',
|
||||
# script_file, htk_dict_file, filePhoneList
|
||||
# ])
|
||||
# except:
|
||||
# print("\033[91mHVite command failed with these input files:\033[0m")
|
||||
# print(_debug_show_file('HVite config', configHVite))
|
||||
# print(_debug_show_file('Accoustic model', AcousticModel))
|
||||
# print(_debug_show_file('Master Label file', mlf_file))
|
||||
# print(_debug_show_file('Output', fa_file))
|
||||
# print(_debug_show_file('Script file', script_file))
|
||||
# print(_debug_show_file('HTK dictionary', htk_dict_file))
|
||||
# print(_debug_show_file('Phoneme list', filePhoneList))
|
||||
# raise
|
||||
if do_forced_alignment:
|
||||
configHVite = cygwin_dir + r'\config\config.HVite'
|
||||
filePhoneList = experiments_dir + r'\friesian\acoustic_model\config\phonelist_friesian.txt'
|
||||
wav_dir = experiments_dir + r'\stimmen\wav'
|
||||
|
||||
#for hmm_num in [1, 2, 4, 8, 16, 32, 64, 128]:
|
||||
for hmm_num in [64]:
|
||||
hmm_num_str = str(hmm_num)
|
||||
AcousticModel = experiments_dir + r'\friesian\acoustic_model\model\hmm' + hmm_num_str + r'-3\hmmdefs'
|
||||
|
||||
predictions = []
|
||||
file_num_max = len(filenames)
|
||||
for i in range(0, file_num_max):
|
||||
print('=== {0}/{1} ==='.format(i, file_num_max))
|
||||
filename = filenames[i]
|
||||
fileWav = wav_dir + '\\' + filename
|
||||
|
||||
if os.path.exists(fileWav):
|
||||
word = words[i]
|
||||
WORD = word.upper()
|
||||
|
||||
# make label file.
|
||||
fileLab = wav_dir + '\\' + filename.replace('.wav', '.lab')
|
||||
with open(fileLab, 'w') as f:
|
||||
lines = f.write(WORD)
|
||||
|
||||
fileDic = experiments_dir + r'\stimmen\dic_short' + '\\' + word + '.dic'
|
||||
fileFA = experiments_dir + r'\stimmen\FA_short' + '\\' + filename.replace('.wav', '.txt') + hmm_num_str
|
||||
|
||||
pyHTK.doHVite(fileWav, fileLab, fileDic, fileFA, configHVite, filePhoneList, AcousticModel)
|
||||
prediction = read_fileFA(fileFA)
|
||||
predictions.append(prediction)
|
||||
|
||||
os.remove(fileLab)
|
||||
print('{0}: {1} -> {2}'.format(WORD, pronunciations[i], prediction))
|
||||
else:
|
||||
predictions.append('')
|
||||
print('!!!!! file not found.')
|
||||
|
||||
predictions = np.array(predictions)
|
||||
match = np.c_[words[predictions != ''], pronunciations[predictions != ''], predictions[predictions != '']]
|
||||
np.save(data_dir + '\\match_hmm' + hmm_num_str + '.npy', match)
|
||||
|
||||
|
||||
##os.remove(hcopy_scp.name)
|
||||
## ======================= evaluate the result of forced alignment =======================
|
||||
if eval_forced_alignment:
|
||||
|
||||
#for hmm_num in [1, 2, 4, 8, 16, 32, 64]:
|
||||
hmm_num = 64
|
||||
hmm_num_str = str(hmm_num)
|
||||
match = np.load(data_dir + '\\match_hmm' + hmm_num_str + '.npy')
|
||||
|
||||
# use dic_short?
|
||||
if 1:
|
||||
pronunciation_variants = np.array(['WORD', 'pronunciation']).reshape(1, 2)
|
||||
for word in word_list:
|
||||
fileDic = experiments_dir + r'\stimmen\dic_short' + '\\' + word + '.dic'
|
||||
pronunciation_variants = np.r_[pronunciation_variants, pyHTK.loadHTKdic(fileDic)]
|
||||
|
||||
match_short = []
|
||||
for line in match:
|
||||
word = line[0]
|
||||
WORD = word.upper()
|
||||
pronvar = pronunciation_variants[pronunciation_variants[:, 0] == word.upper(), 1]
|
||||
|
||||
if line[1] in pronvar:
|
||||
match_short.append(line)
|
||||
|
||||
match_short = np.array(match_short)
|
||||
match = np.copy(match_short)
|
||||
|
||||
# number of match
|
||||
total_match = sum(match[:, 1] == match[:, 2])
|
||||
print("{}: {}/{}".format(hmm_num_str, total_match, match.shape[0]))
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user