Compare commits

..

No commits in common. "3a98e184fea13fd784fdf56a689926d833ea3b70" and "d56ef7f0759e5f1c143d98dbd5329926503c2574" have entirely different histories.

14 changed files with 310 additions and 1659 deletions

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@ -9,12 +9,13 @@ Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "Solution Items", "Solution
ProjectSection(SolutionItems) = preProject ProjectSection(SolutionItems) = preProject
..\forced_alignment\forced_alignment\__init__.py = ..\forced_alignment\forced_alignment\__init__.py ..\forced_alignment\forced_alignment\__init__.py = ..\forced_alignment\forced_alignment\__init__.py
..\forced_alignment\forced_alignment\convert_phone_set.py = ..\forced_alignment\forced_alignment\convert_phone_set.py ..\forced_alignment\forced_alignment\convert_phone_set.py = ..\forced_alignment\forced_alignment\convert_phone_set.py
..\toolbox\evaluation.py = ..\toolbox\evaluation.py ..\ipa-xsama-converter\converter.py = ..\ipa-xsama-converter\converter.py
..\forced_alignment\forced_alignment\defaultfiles.py = ..\forced_alignment\forced_alignment\defaultfiles.py
..\forced_alignment\forced_alignment\forced_alignment.pyproj = ..\forced_alignment\forced_alignment\forced_alignment.pyproj ..\forced_alignment\forced_alignment\forced_alignment.pyproj = ..\forced_alignment\forced_alignment\forced_alignment.pyproj
..\forced_alignment\forced_alignment\htk_dict.py = ..\forced_alignment\forced_alignment\htk_dict.py
..\forced_alignment\forced_alignment\lexicon.py = ..\forced_alignment\forced_alignment\lexicon.py ..\forced_alignment\forced_alignment\lexicon.py = ..\forced_alignment\forced_alignment\lexicon.py
..\forced_alignment\forced_alignment\mlf.py = ..\forced_alignment\forced_alignment\mlf.py ..\forced_alignment\forced_alignment\mlf.py = ..\forced_alignment\forced_alignment\mlf.py
..\forced_alignment\forced_alignment\pronunciations.py = ..\forced_alignment\forced_alignment\pronunciations.py ..\forced_alignment\forced_alignment\pronunciations.py = ..\forced_alignment\forced_alignment\pronunciations.py
..\toolbox\pyHTK.py = ..\toolbox\pyHTK.py
..\forced_alignment\forced_alignment\pyhtk.py = ..\forced_alignment\forced_alignment\pyhtk.py ..\forced_alignment\forced_alignment\pyhtk.py = ..\forced_alignment\forced_alignment\pyhtk.py
..\forced_alignment\forced_alignment\scripts.py = ..\forced_alignment\forced_alignment\scripts.py ..\forced_alignment\forced_alignment\scripts.py = ..\forced_alignment\forced_alignment\scripts.py
..\forced_alignment\forced_alignment\tempfilename.py = ..\forced_alignment\forced_alignment\tempfilename.py ..\forced_alignment\forced_alignment\tempfilename.py = ..\forced_alignment\forced_alignment\tempfilename.py

View File

@ -22,11 +22,12 @@ dataset_list = ['devel', 'test', 'train']
extract_features = 0 extract_features = 0
make_feature_list = 0 make_feature_list = 0
conv_lexicon = 0 conv_lexicon = 0
check_lexicon = 0 check_lexicon = 1
make_mlf = 0 make_mlf = 0
combine_files = 0 combine_files = 0
flat_start = 0 flat_start = 0
train_model = 1 train_model = 0
forced_alignment = 0
sys.path.append(os.path.join(os.path.dirname(sys.path[0]), curr_dir)) sys.path.append(os.path.join(os.path.dirname(sys.path[0]), curr_dir))
@ -287,7 +288,7 @@ if flat_start:
## ======================= estimate monophones ======================= ## ======================= estimate monophones =======================
if train_model: if train_model:
iter_num_max = 3 iter_num_max = 3
for mix_num in [128, 256, 512, 1024]: for mix_num in [16, 32, 64, 128]:
for iter_num in range(1, iter_num_max+1): for iter_num in range(1, iter_num_max+1):
print("===== mix{}, iter{} =====".format(mix_num, iter_num)) print("===== mix{}, iter{} =====".format(mix_num, iter_num))
iter_num_pre = iter_num - 1 iter_num_pre = iter_num - 1
@ -314,6 +315,5 @@ if train_model:
fout.write("MU %d {*.state[2-4].mix}" % (mix_num_next)) fout.write("MU %d {*.state[2-4].mix}" % (mix_num_next))
subprocessStr = 'HHEd -T 1 -H ' + modelN_dir + '\\' + hmmdefs_name + ' -M ' + modelN_dir_next + ' ' + header_file + ' ' + phonelist subprocessStr = 'HHEd -T 1 -H ' + modelN_dir + '\\' + hmmdefs_name + ' -M ' + modelN_dir_next + ' ' + header_file + ' ' + phonelist
subprocess.call(subprocessStr, shell=True) subprocess.call(subprocessStr, shell=True)

View File

@ -28,12 +28,6 @@
<Compile Include="convert_xsampa2ipa.py"> <Compile Include="convert_xsampa2ipa.py">
<SubType>Code</SubType> <SubType>Code</SubType>
</Compile> </Compile>
<Compile Include="defaultfiles.py">
<SubType>Code</SubType>
</Compile>
<Compile Include="fa_test.py">
<SubType>Code</SubType>
</Compile>
<Compile Include="performance_check.py"> <Compile Include="performance_check.py">
<SubType>Code</SubType> <SubType>Code</SubType>
</Compile> </Compile>

View File

@ -1,13 +1,17 @@
import os import os
import sys import sys
from collections import Counter
import numpy as np
import pandas as pd import pandas as pd
import defaultfiles as default
sys.path.append(default.forced_alignment_module_dir) ## ======================= user define =======================
repo_dir = 'C:\\Users\\Aki\\source\\repos\\acoustic_model'
curr_dir = repo_dir + '\\acoustic_model'
forced_alignment_module = 'C:\\Users\\Aki\\source\\repos\\forced_alignment'
sys.path.append(os.path.join(os.path.dirname(sys.path[0]), curr_dir))
sys.path.append(forced_alignment_module)
from forced_alignment import convert_phone_set from forced_alignment import convert_phone_set
@ -38,41 +42,6 @@ def make_filelist(input_dir, output_txt):
fout.write(input_dir + '\\' + filename + '\n') fout.write(input_dir + '\\' + filename + '\n')
def make_dic(word, pronvar_, fileDic, output_type):
"""
make dict files which can be used for HTK.
param word: target word.
param pronvar_: pronunciation variant. nx2 (WORD /t pronunciation) ndarray.
param fileDic: output dic file.
param output_type: 0:full, 1:statistics, 2:frequency <2% entries are removed. 3:top 3.
"""
#assert(output_type < 4 and output_type >= 0, 'output_type should be an integer between 0 and 3.')
WORD = word.upper()
if output_type == 0: # full
pronvar = np.unique(pronvar_)
with open(fileDic, 'w') as f:
for pvar in pronvar:
f.write('{0}\t{1}\n'.format(WORD, pvar))
else:
c = Counter(pronvar_)
total_num = sum(c.values())
with open(fileDic, 'w') as f:
if output_type == 3:
for key, value in c.most_common(3):
f.write('{0}\t{1}\n'.format(WORD, key))
else:
for key, value in c.items():
percentage = value/total_num*100
if output_type == 1: # all
f.write('{0}\t{1:.2f}\t{2}\t{3}\n'.format(value, percentage, WORD, key))
elif output_type == 2: # less than 2 percent
if percentage < 2:
f.write('{0}\t{1}\n'.format(WORD, key))
def get_phonelist(lexicon_file): def get_phonelist(lexicon_file):
""" Make a list of phones which appears in the lexicon. """ """ Make a list of phones which appears in the lexicon. """
@ -131,21 +100,3 @@ def combine_lexicon(lexicon_file1, lexicon_file2, lexicon_out):
lex = pd.concat([lex1, lex2]) lex = pd.concat([lex1, lex2])
lex = lex.sort_values(by='word', ascending=True) lex = lex.sort_values(by='word', ascending=True)
lex.to_csv(lexicon_out, index=False, header=False, encoding="utf-8", sep='\t') lex.to_csv(lexicon_out, index=False, header=False, encoding="utf-8", sep='\t')
def read_fileFA(fileFA):
"""
read the result file of HTK forced alignment.
this function only works when input is one word.
"""
with open(fileFA, 'r') as f:
lines = f.read()
lines = lines.split('\n')
phones = []
for line in lines:
line_split = line.split()
if len(line_split) > 1:
phones.append(line_split[2])
return ' '.join(phones)

View File

@ -2,4 +2,4 @@
config_hcopy = c:\cygwin64\home\Aki\acoustic_model\config\config.HCopy config_hcopy = c:\cygwin64\home\Aki\acoustic_model\config\config.HCopy
config_train = c:\cygwin64\home\Aki\acoustic_model\config\config.train config_train = c:\cygwin64\home\Aki\acoustic_model\config\config.train
mkhmmdefs_pl = c:\cygwin64\home\Aki\acoustic_model\src\acoustic_model\mkhmmdefs.pl mkhmmdefs_pl = c:\cygwin64\home\Aki\acoustic_model\src\acoustic_model\mkhmmdefs.pl
FAME_dir = C:\OneDrive\WSL\kaldi-trunk\egs\fame\s5\corpus FAME_dir = c:\OneDrive\Research\rug\experiments\friesian\corpus

View File

@ -7,155 +7,122 @@ import json
import sys import sys
import os import os
import defaultfiles as default
sys.path.append(os.path.join(default.repo_dir, 'forced_alignment')) #sys.path.append(ipa_xsampa_converter_dir)
from forced_alignment import convert_phone_set #import converter
def load_converter(source, sink, ipa_xsampa_converter_dir): def load_converter(source, sink, ipa_xsampa_converter_dir):
"""load the converter. """load the converter.
source and sink are either of "ipa", "xsampa" or "sassc". source and sink are either of "ipa", "xsampa" or "sassc".
""" """
choices = ["ipa", "xsampa", "sassc"] choices = ["ipa", "xsampa", "sassc"]
# Validate params # Validate params
try: try:
choice1 = choices.index(source) choice1 = choices.index(source)
choice2 = choices.index(sink) choice2 = choices.index(sink)
if choice1 == choice2: if choice1 == choice2:
print("source and destination format are the same.") print("source and destination format are the same.")
except ValueError: except ValueError:
print("source and destination should be one of [ipa xsampa sassc].") print("source and destination should be one of [ipa xsampa sassc].")
exit(1) exit(1)
# Mappings from disk # Mappings from disk
# some may not be used if source or sink is already IPA # some may not be used if source or sink is already IPA
source_to_ipa = {} source_to_ipa = {}
ipa_to_sink = {} ipa_to_sink = {}
ipa_xsampa = [] ipa_xsampa = []
sassc_ipa = [] sassc_ipa = []
# The IPAs that actually occur within SASSC # The IPAs that actually occur within SASSC
sassc_active_ipa = {} sassc_active_ipa = {}
script_dir = os.path.dirname(os.path.realpath(__file__)) script_dir = os.path.dirname(os.path.realpath(__file__))
with open(os.path.join(ipa_xsampa_converter_dir, "ipa_xsampa_map.json"), encoding="utf-8") as f: with open(os.path.join(ipa_xsampa_converter_dir, "ipa_xsampa_map.json"), encoding="utf-8") as f:
ipa_xsampa = json.load(f) ipa_xsampa = json.load(f)
sassc_active = source == "sassc" or sink == "sassc" sassc_active = source == "sassc" or sink == "sassc"
if sassc_active: if sassc_active:
with open(os.path.join(script_dir, "./sassc_ipa.json")) as f: with open(os.path.join(script_dir, "./sassc_ipa.json")) as f:
sassc_ipa = json.load(f) sassc_ipa = json.load(f)
for pair in sassc_ipa: for pair in sassc_ipa:
for char in pair[1]: for char in pair[1]:
sassc_active_ipa[char] = 1 sassc_active_ipa[char] = 1
if source == "xsampa": if source == "xsampa":
for pair in ipa_xsampa: for pair in ipa_xsampa:
source_to_ipa[pair[1]] = pair[0] source_to_ipa[pair[1]] = pair[0]
elif source == "sassc": elif source == "sassc":
for pair in sassc_ipa: for pair in sassc_ipa:
source_to_ipa[pair[0]] = pair[1] source_to_ipa[pair[0]] = pair[1]
if sink == "xsampa": if sink == "xsampa":
for pair in ipa_xsampa: for pair in ipa_xsampa:
ipa_to_sink[pair[0]] = pair[1] ipa_to_sink[pair[0]] = pair[1]
elif sink == "sassc": elif sink == "sassc":
for pair in sassc_ipa: for pair in sassc_ipa:
ipa_to_sink[pair[1]] = pair[0] ipa_to_sink[pair[1]] = pair[0]
# Combine them into a single mapping # Combine them into a single mapping
mapping = {} mapping = {}
if source == "ipa": if source == "ipa":
mapping = ipa_to_sink mapping = ipa_to_sink
elif sink == "ipa": elif sink == "ipa":
mapping = source_to_ipa mapping = source_to_ipa
else: else:
for k, ipas in source_to_ipa.iteritems(): for k, ipas in source_to_ipa.iteritems():
map_out = "" map_out = ""
failed = False failed = False
for ipa in ipas: for ipa in ipas:
val = ipa_to_sink.get(ipa) val = ipa_to_sink.get(ipa)
if not val: if not val:
failed = True failed = True
break break
map_out += val map_out += val
mapping[k] = map_out if not failed else None mapping[k] = map_out if not failed else None
return mapping return mapping
def conversion(source, sink, mapping, line): def conversion(source, sink, mapping, line):
""" """
conversion. conversion.
Args: Args:
mapping: can be obtained with load_converter(). mapping: can be obtained with load_converter().
line: must be seperated, by default the seperator is whitespace. line: must be seperated, by default the seperator is whitespace.
""" """
# Edit this to change the seperator # Edit this to change the seperator
SEPERATOR = " " SEPERATOR = " "
line = line.strip() line = line.strip()
output = [] output = []
#if sassc_active: #if sassc_active:
# tokens = line.split(SEPERATOR) # tokens = line.split(SEPERATOR)
#else: #else:
tokens = line tokens = line
for token in tokens: for token in tokens:
if token.isspace(): if token.isspace():
output.append(token) output.append(token)
continue continue
# Remove extraneous chars that IPA does not accept # Remove extraneous chars that IPA does not accept
if sink == "sassc": if sink == "sassc":
cleaned_token = u"" cleaned_token = u""
for char in token: for char in token:
if sassc_active_ipa.get(char): if sassc_active_ipa.get(char):
cleaned_token += char cleaned_token += char
token = cleaned_token token = cleaned_token
mapped = mapping.get(token) mapped = mapping.get(token)
if not mapped: if not mapped:
print("WARNING: could not map token ", token, file=sys.stderr) print("WARNING: could not map token ", token, file=sys.stderr)
else: else:
output.append(mapped) output.append(mapped)
#if sassc_active: #if sassc_active:
# output = SEPERATOR.join(output) # output = SEPERATOR.join(output)
#else: #else:
output = "".join(output) output = "".join(output)
return output return output
def xsampa2ipa(mapping, xsampa):
"""
conversion from xsampa to ipa.
Args:
mapping: can be obtained with load_converter().
xsampa: a line written in xsampa.
Notes:
function conversion does not work when:
- the input is a word.
- when the line includes '\'.
- 'ɡ' and 'g' are considered to be different.
"""
# make a multi_character_list to split 'xsampa'.
multi_character_list = []
for i in list(mapping):
if len(i) > 1:
multi_character_list.append(i)
# conversion
ipa = []
for phone in convert_phone_set.multi_character_tokenize(xsampa, multi_character_list):
ipa.append(mapping.get(phone, phone))
ipa = ''.join(ipa)
# strange conversion.
ipa = ipa.replace('ɡ', 'g')
return ipa

View File

@ -1,35 +0,0 @@
import os
#default_hvite_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data', 'htk', 'config.HVite')
cygwin_dir = r'C:\cygwin64\home\Aki\acoustic_model'
#config_hcopy = os.path.join(cygwin_dir, 'config', 'config.HCopy')
#config_train = os.path.join(cygwin_dir, 'config', 'config.train')
config_hvite = os.path.join(cygwin_dir, 'config', 'config.HVite')
#mkhmmdefs_pl = os.path.join(cygwin_dir, 'src', 'acoustic_model', 'mkhmmdefs.pl')
#dbLexicon = C:\\Users\\Aki\\source\\repos\\rug_VS\\forced_alignment\\config\\lexicon.accdb
#scriptBarbara = C:\\Users\\Aki\\source\\repos\\rug_VS\\forced_alignment\\config\\pronvars_barbara.perl
#exeG2P = C:\\Users\\Aki\\source\\repos\\rug_VS\\forced_alignment\\config\\string2phon.exe
#[pyHTK]
#configHVite = C:\\Users\\Aki\\source\\repos\\rug_VS\\forced_alignment\\config\\config.HVite
#filePhoneList = C:\\Users\\Aki\\source\\repos\\rug_VS\\forced_alignment\\config\\phonelist_barbara.txt
#AcousticModel = C:\\Users\\Aki\\source\\repos\\rug_VS\\forced_alignment\\config\\hmmdefs_16-2_barbara.compo
#dbLexicon = config['cLexicon']['dbLexicon']
#scriptBarbara = config['cLexicon']['scriptBarbara']
#exeG2P = config['cLexicon']['exeG2P']
#configHVite = config['pyHTK']['configHVite']
#filePhoneList = config['pyHTK']['filePhoneList']
#AcousticModel = config['pyHTK']['AcousticModel']
repo_dir = r'C:\Users\Aki\source\repos'
ipa_xsampa_converter_dir = os.path.join(repo_dir, 'ipa-xsama-converter')
forced_alignment_module_dir = os.path.join(repo_dir, 'forced_alignment')
fame_dir = r'C:\OneDrive\WSL\kaldi-trunk\egs\fame\s5\corpus'
experiments_dir = r'c:\OneDrive\Research\rug\experiments'
phonelist = os.path.join(experiments_dir, 'friesian', 'acoustic_model', 'config', 'phonelist_friesian.txt')

View File

@ -1,16 +0,0 @@
import os
import sys
os.chdir(r'C:\Users\Aki\source\repos\acoustic_model\acoustic_model')
import defaultfiles as default
sys.path.append(os.path.join(default.repo_dir, 'forced_alignment'))
from forced_alignment import forced_alignment
wav_file = r'C:\Users\Aki\source\repos\forced_alignment\notebooks\sample\10147-1464186409-1917281.wav'
forced_alignment(
wav_file,
#'Australië'
'BUFFETCOUPON COULISSEN DOUANE'
)

View File

@ -1,437 +1,257 @@
import os import os
os.chdir(r'C:\Users\Aki\source\repos\acoustic_model\acoustic_model')
import sys import sys
import csv import csv
import subprocess import subprocess
import configparser
from collections import Counter from collections import Counter
import re
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
#from sklearn.metrics import confusion_matrix
import acoustic_model_functions as am_func
import convert_xsampa2ipa
import defaultfiles as default
## ======================= user define ======================= ## ======================= functions =======================
#curr_dir = r'C:\Users\Aki\source\repos\acoustic_model\acoustic_model'
#config_ini = 'config.ini' def read_fileFA(fileFA):
#repo_dir = r'C:\Users\Aki\source\repos' """
#forced_alignment_module = repo_dir + '\\forced_alignment' read the result file of HTK forced alignment.
#forced_alignment_module_old = repo_dir + '\\aki_tools' this function only works when input is one word.
#ipa_xsampa_converter_dir = repo_dir + '\\ipa-xsama-converter' """
#accent_classification_dir = repo_dir + '\\accent_classification\accent_classification' with open(fileFA, 'r') as f:
excel_file = os.path.join(default.experiments_dir, 'stimmen', 'data', 'Frisian Variants Picture Task Stimmen.xlsx') lines = f.read()
lines = lines.split('\n')
phones = []
for line in lines:
line_split = line.split()
if len(line_split) > 1:
phones.append(line_split[2])
return ' '.join(phones)
#experiments_dir = r'C:\OneDrive\Research\rug\experiments' #####################
data_dir = os.path.join(default.experiments_dir, 'stimmen', 'data') ## USER DEFINE ##
#csvfile = data_dir + '\\Frisian Variants Picture Task Stimmen.csv' #####################
wav_dir = os.path.join(default.experiments_dir, 'stimmen', 'wav') curr_dir = r'C:\Users\Aki\source\repos\acoustic_model\acoustic_model'
acoustic_model_dir = os.path.join(default.experiments_dir, 'friesian', 'acoustic_model', 'model') config_ini = curr_dir + '\\config.ini'
htk_dict_dir = os.path.join(default.experiments_dir, 'stimmen', 'dic_short') forced_alignment_module = r'C:\Users\Aki\source\repos\forced_alignment'
fa_dir = os.path.join(default.experiments_dir, 'stimmen', 'FA') forced_alignment_module_old = r'C:\OneDrive\Research\rug\code\forced_alignment\forced_alignment'
ipa_xsampa_converter_dir = r'C:\Users\Aki\source\repos\ipa-xsama-converter'
#cygwin_dir = r'C:\cygwin64\home\Aki\acoustic_model'
#lex_asr = os.path.join(default.fame_dir, 'lexicon', 'lex.asr')
#lex_asr_htk = os.path.join(default.fame_dir, 'lexicon', 'lex.asr_htk')
csvfile = r"C:\OneDrive\Research\rug\stimmen\Frisian Variants Picture Task Stimmen.csv"
experiments_dir = r'C:\OneDrive\Research\rug\experiments'
data_dir = experiments_dir + '\\stimmen\\data'
cygwin_dir = r'C:\cygwin64\home\Aki\acoustic_model'
# procedure # procedure
convert_phones = 0
make_dic_files = 0 make_dic_files = 0
do_forced_alignment_htk = 1 make_dic_files_short = 0
make_kaldi_data_files = 0 do_forced_alignment = 0
make_kaldi_lexicon_txt = 0 eval_forced_alignment = 1
load_forced_alignment_kaldi = 0
eval_forced_alignment = 0
## ======================= add paths ======================= ## ======================= add paths =======================
sys.path.append(os.path.join(default.repo_dir, 'forced_alignment')) sys.path.append(forced_alignment_module)
from forced_alignment import convert_phone_set from forced_alignment import convert_phone_set
from forced_alignment import pyhtk
sys.path.append(os.path.join(default.repo_dir, 'toolbox')) # for interactive window
#import pyHTK sys.path.append(curr_dir)
from evaluation import plot_confusion_matrix import convert_xsampa2ipa
import acoustic_model_functions as am_func
# for forced-alignment
sys.path.append(forced_alignment_module_old)
import pyHTK
## ======================= load variables =======================
config = configparser.ConfigParser()
config.sections()
config.read(config_ini)
FAME_dir = config['Settings']['FAME_dir']
lex_asr = FAME_dir + '\\lexicon\\lex.asr'
lex_asr_htk = FAME_dir + '\\lexicon\\lex.asr_htk'
## ======================= convert phones ====================== ## ======================= convert phones ======================
if convert_phones:
mapping = convert_xsampa2ipa.load_converter('xsampa', 'ipa', ipa_xsampa_converter_dir)
mapping = convert_xsampa2ipa.load_converter('xsampa', 'ipa', default.ipa_xsampa_converter_dir) ## check phones included in FAME!
# the phones used in the lexicon.
#phonelist = am_func.get_phonelist(lex_htk)
xls = pd.ExcelFile(excel_file) # the lines which include a specific phone.
#lines = am_func.find_phone(lex_asr, 'x')
## check conversion with open(csvfile, encoding="utf-8") as fin:
#df = pd.read_excel(xls, 'frequency') lines = csv.reader(fin, delimiter=';', lineterminator="\n", skipinitialspace=True)
#for xsampa, ipa in zip(df['X-SAMPA'], df['IPA']): next(lines, None) # skip the headers
# #ipa_converted = convert_xsampa2ipa.conversion('xsampa', 'ipa', mapping, xsampa_)
# ipa_converted = convert_xsampa2ipa.xsampa2ipa(mapping, xsampa)
# if not ipa_converted == ipa:
# print('{0}: {1} - {2}'.format(xsampa, ipa_converted, ipa))
filenames = []
words = []
pronunciations = []
for line in lines:
if line[1] is not '' and len(line) > 5:
filenames.append(line[0])
words.append(line[1])
pron_xsampa = line[3]
pron_ipa = convert_xsampa2ipa.conversion('xsampa', 'ipa', mapping, pron_xsampa)
pron_ipa = pron_ipa.replace('ː', ':')
pron_famehtk = convert_phone_set.ipa2famehtk(pron_ipa)
## check phones included in FAME! # adjust to phones used in the acoustic model.
# the phones used in the lexicon. pron_famehtk = pron_famehtk.replace('sp', 'sil')
#phonelist = am_func.get_phonelist(lex_asr) pron_famehtk = pron_famehtk.replace('ce :', 'ce') # because ceh is ignored.
pron_famehtk = pron_famehtk.replace('w :', 'wh')
pron_famehtk = pron_famehtk.replace('e :', 'eh')
pron_famehtk = pron_famehtk.replace('eh :', 'eh')
pron_famehtk = pron_famehtk.replace('ih :', 'ih')
# the lines which include a specific phone. #translation_key = {'sp': 'sil', 'ce :': 'ceh', 'w :': 'wh'}
#lines = am_func.find_phone(lex_asr, 'x') #pron = []
#for phoneme in pron_famehtk.split(' '):
# pron.append(translation_key.get(phoneme, phoneme))
#pronunciations.append(' '.join(pron_famehtk))
pronunciations.append(pron_famehtk)
# check if all phones are in the phonelist of the acoustic model.
#phonelist = ' '.join(pronunciations)
#np.unique(phonelist.split(' '))
#phonelist.find(':')
# Filename, Word, Self Xsampa filenames = np.array(filenames)
df = pd.read_excel(xls, 'original') words = np.array(words)
pronunciations = np.array(pronunciations)
ipas = [] del line, lines
famehtks = [] del pron_xsampa, pron_ipa, pron_famehtk
for xsampa in df['Self Xsampa']:
if not isinstance(xsampa, float): # 'NaN'
# typo?
xsampa = xsampa.replace('r2:z@rA:\\t', 'r2:z@rA:t')
xsampa = xsampa.replace(';', ':')
ipa = convert_xsampa2ipa.xsampa2ipa(mapping, xsampa) np.save(data_dir + '\\filenames.npy', filenames)
ipa = ipa.replace('ː', ':') np.save(data_dir + '\\words.npy', words)
ipa = ipa.replace(' ', '') np.save(data_dir + '\\pronunciations.npy', pronunciations)
ipas.append(ipa) else:
famehtk = convert_phone_set.ipa2famehtk(ipa) filenames = np.load(data_dir + '\\filenames.npy')
famehtks.append(famehtk) words = np.load(data_dir + '\\words.npy')
else:
ipas.append('')
famehtks.append('')
# extract interesting cols. pronunciations = np.load(data_dir + '\\pronunciations.npy')
df = pd.DataFrame({'filename': df['Filename'], word_list = np.unique(words)
'word': df['Word'],
'xsampa': df['Self Xsampa'],
'ipa': pd.Series(ipas),
'famehtk': pd.Series(famehtks)})
# cleansing.
df = df[~df['famehtk'].isin(['/', ''])]
## ======================= make dict files used for HTK. ====================== ## ======================= make dict files used for HTK. ======================
if make_dic_files: if make_dic_files:
word_list = np.unique(df['word']) output_dir = experiments_dir + r'\stimmen\dic'
output_type = 3 for word in word_list:
WORD = word.upper()
fileDic = output_dir + '\\' + word + '.dic'
for word in word_list: # make dic file.
htk_dict_file = htk_dict_dir + '\\' + word + '.dic' pronvar_ = pronunciations[words == word]
pronvar = np.unique(pronvar_)
# pronunciation variant of the target word. with open(fileDic, 'w') as f:
pronvar_ = df['famehtk'][df['word'].str.match(word)] for pvar in pronvar:
f.write('{0}\t{1}\n'.format(WORD, pvar))
# make dic file.
am_func.make_dic(word, pronvar_, htk_dict_file, output_type)
## ======================= forced alignment using HTK ======================= ## ======================= make dict files for most popular words. ======================
if do_forced_alignment_htk: if make_dic_files_short:
output_dir = experiments_dir + r'\stimmen\dic'
#hmm_num = 2 #word = word_list[3]
for hmm_num in [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]: for word in word_list:
WORD = word.upper()
fileStat = output_dir + '\\' + word + '_stat.csv'
hmm_num_str = str(hmm_num) pronvar = pronunciations[words == word]
acoustic_model = os.path.join(acoustic_model_dir, 'hmm' + hmm_num_str + r'-2\hmmdefs') c = Counter(pronvar)
total_num = sum(c.values())
predictions = [] with open(fileStat, 'w') as f:
for i, filename in enumerate(df['filename']): for key, value in c.items():
print('=== {0}/{1} ==='.format(i, len(df))) f.write('{0}\t{1:.2f}\t{2}\t{3}\n'.format(value, value/total_num*100, WORD, key))
wav_file = os.path.join(wav_dir, filename)
if os.path.exists(wav_file) and i in df['filename'].keys():
word = df['word'][i]
WORD = word.upper()
# make label file.
label_file = os.path.join(wav_dir, filename.replace('.wav', '.lab'))
with open(label_file, 'w') as f:
lines = f.write(WORD)
htk_dict_file = os.path.join(htk_dict_dir, word + '.dic')
fa_file = os.path.join(fa_dir, filename.replace('.wav', '.txt') + hmm_num_str)
pyhtk.doHVite(wav_file, label_file, htk_dict_file, fa_file, default.config_hvite, default.phonelist, acoustic_model)
prediction = am_func.read_fileFA(fa_file)
predictions.append(prediction)
os.remove(label_file)
print('{0}: {1} -> {2}'.format(WORD, df['famehtk'][i], prediction))
else:
predictions.append('')
print('!!!!! file not found.')
predictions = np.array(predictions)
#match = np.c_[words[predictions != ''], pronunciations[predictions != ''], predictions[predictions != '']]
np.save(os.path.join(data_dir, 'predictions_hmm' + hmm_num_str + '.npy'), predictions)
## ======================= make files which is used for forced alignment by Kaldi ======================= ## ======================= forced alignment =======================
if make_kaldi_data_files: if do_forced_alignment:
wav_dir = r'c:\OneDrive\WSL\kaldi-trunk\egs\fame\s5\corpus\stimmen' configHVite = cygwin_dir + r'\config\config.HVite'
kaldi_work_dir = r'C:\OneDrive\WSL\kaldi-trunk\egs\fame\s5' filePhoneList = experiments_dir + r'\friesian\acoustic_model\config\phonelist_friesian.txt'
kaldi_data_dir = os.path.join(kaldi_work_dir, 'data', 'alignme') wav_dir = experiments_dir + r'\stimmen\wav'
kaldi_dict_dir = os.path.join(kaldi_work_dir, 'data', 'local', 'dict')
htk_dict_dir = os.path.join(experiments_dir, 'stimmen', 'dic_top3')
wav_scp = os.path.join(kaldi_data_dir, 'wav.scp') #for hmm_num in [1, 2, 4, 8, 16, 32, 64, 128]:
text_file = os.path.join(kaldi_data_dir, 'text') for hmm_num in [64]:
utt2spk = os.path.join(kaldi_data_dir, 'utt2spk') hmm_num_str = str(hmm_num)
AcousticModel = experiments_dir + r'\friesian\acoustic_model\model\hmm' + hmm_num_str + r'-3\hmmdefs'
lexicon_txt = os.path.join(kaldi_dict_dir, 'lexicon.txt') predictions = []
file_num_max = len(filenames)
for i in range(0, file_num_max):
print('=== {0}/{1} ==='.format(i, file_num_max))
filename = filenames[i]
fileWav = wav_dir + '\\' + filename
predictions = [] if os.path.exists(fileWav):
file_num_max = len(filenames) word = words[i]
WORD = word.upper()
# remove previous files. # make label file.
if os.path.exists(wav_scp): fileLab = wav_dir + '\\' + filename.replace('.wav', '.lab')
os.remove(wav_scp) with open(fileLab, 'w') as f:
if os.path.exists(text_file): lines = f.write(WORD)
os.remove(text_file)
if os.path.exists(utt2spk):
os.remove(utt2spk)
f_wav_scp = open(wav_scp, 'a', encoding="utf-8", newline='\n') fileDic = experiments_dir + r'\stimmen\dic_short' + '\\' + word + '.dic'
f_text_file = open(text_file, 'a', encoding="utf-8", newline='\n') fileFA = experiments_dir + r'\stimmen\FA_short' + '\\' + filename.replace('.wav', '.txt') + hmm_num_str
f_utt2spk = open(utt2spk, 'a', encoding="utf-8", newline='\n')
# make wav.scp, text, and utt2spk files. pyHTK.doHVite(fileWav, fileLab, fileDic, fileFA, configHVite, filePhoneList, AcousticModel)
for i in range(0, file_num_max): prediction = read_fileFA(fileFA)
#for i in range(400, 410): predictions.append(prediction)
print('=== {0}/{1} ==='.format(i+1, file_num_max))
filename = filenames[i]
wav_file = wav_dir + '\\' + filename
if os.path.exists(wav_file): os.remove(fileLab)
speaker_id = 'speaker_' + str(i).zfill(4) print('{0}: {1} -> {2}'.format(WORD, pronunciations[i], prediction))
utterance_id = filename.replace('.wav', '') else:
utterance_id = utterance_id.replace(' ', '_') predictions.append('')
utterance_id = speaker_id + '-' + utterance_id print('!!!!! file not found.')
# wav.scp file
wav_file_unix = wav_file.replace('\\', '/')
wav_file_unix = wav_file_unix.replace('c:/', '/mnt/c/')
f_wav_scp.write('{0} {1}\n'.format(utterance_id, wav_file_unix))
# text file
word = words[i].lower()
f_text_file.write('{0}\t{1}\n'.format(utterance_id, word))
# utt2spk
f_utt2spk.write('{0} {1}\n'.format(utterance_id, speaker_id))
f_wav_scp.close()
f_text_file.close()
f_utt2spk.close()
## ======================= make lexicon txt which is used by Kaldi =======================
if make_kaldi_lexicon_txt:
kaldi_work_dir = r'C:\OneDrive\WSL\kaldi-trunk\egs\fame\s5'
kaldi_dict_dir = os.path.join(kaldi_work_dir, 'data', 'local', 'dict')
lexicon_txt = os.path.join(kaldi_dict_dir, 'lexicon.txt')
option_num = 5
# remove previous file.
if os.path.exists(lexicon_txt):
os.remove(lexicon_txt)
mapping = convert_xsampa2ipa.load_converter('xsampa', 'ipa', ipa_xsampa_converter_dir)
with open(csvfile, encoding="utf-8") as fin:
lines = csv.reader(fin, delimiter=';', lineterminator="\n", skipinitialspace=True)
next(lines, None) # skip the headers
filenames = []
words = []
pronunciations = []
p = []
for line in lines:
if line[1] is not '' and len(line) > 5:
filenames.append(line[0])
words.append(line[1])
pron_xsampa = line[3]
pron_ipa = convert_xsampa2ipa.conversion('xsampa', 'ipa', mapping, pron_xsampa)
pron_ipa = pron_ipa.replace('ː', ':')
# adjust to phones used in the acoustic model.
pronunciations.append(pron_ipa)
# check if all phones are in the phonelist of the acoustic model.
#'y', 'b', 'ɾ', 'u', 'ɔ:', 'ø', 't', 'œ', 'n', 'ɒ', 'ɐ', 'f', 'o', 'k', 'x', 'ɡ', 'v', 's', 'ɛ:', 'ɪ:', 'ɑ', 'ɛ', 'a', 'd', 'z', 'ɪ', 'ɔ', 'l', 'i:', 'm', 'p', 'a:', 'i', 'e', 'j', 'o:', 'ʁ', 'h', ':', 'e:', 'ə', 'æ', 'χ', 'w', 'r', 'ə:', 'sp', 'ʊ', 'u:', 'ŋ'
filenames = np.array(filenames)
words = np.array(words)
wordlist = np.unique(words)
pronunciations = np.array(pronunciations)
# output lexicon.txt
#f_lexicon_txt = open(lexicon_txt, 'a', encoding="utf-8", newline='\n')
pronvar_list_all = []
for word in word_list:
# pronunciation variant of the target word.
pronvar_ = pronunciations[words == word]
# remove ''
pronvar_ = np.delete(pronvar_, np.where(pronvar_==''))
c = Counter(pronvar_)
total_num = sum(c.values())
for key, value in c.most_common(option_num):
#print('{0}\t{1}\t{2}\t{3}'.format(word, key, value, total_num))
key = key.replace('æ', 'ɛ')
key = key.replace('ɐ', 'a')
key = key.replace('ɑ', 'a')
key = key.replace('ɾ', 'r')
key = key.replace('ʁ', 'r')
key = key.replace('ʊ', 'u')
key = key.replace('χ', 'x')
#print('-->{0}\t{1}\t{2}\t{3}\n'.format(word, key, value, total_num))
# make possible pronounciation variant list.
pronvar_list = [key]
while 'ø:' in ' '.join(pronvar_list) or 'œ' in ' '.join(pronvar_list) or 'ɒ' in ' '.join(pronvar_list):
pronvar_list_ = []
for p in pronvar_list:
if 'ø:' in p:
pronvar_list_.append(p.replace('ø:', 'ö'))
pronvar_list_.append(p.replace('ø:', 'ö:'))
if 'œ' in p:
pronvar_list_.append(p.replace('œ', 'ɔ̈'))
pronvar_list_.append(p.replace('œ', 'ɔ̈:'))
if 'ɒ' in p:
pronvar_list_.append(p.replace('ɒ', 'ɔ̈'))
pronvar_list_.append(p.replace('ɒ', 'ɔ̈:'))
pronvar_list = np.unique(pronvar_list_)
for pronvar_ in pronvar_list:
split_ipa = convert_phone_set.split_fame_ipa(pronvar_)
pronvar_out = ' '.join(split_ipa)
pronvar_list_all.append([word, pronvar_out])
# output
pronvar_list_all = np.array(pronvar_list_all)
pronvar_list_all = np.unique(pronvar_list_all, axis=0)
#f_lexicon_txt.write('<UNK>\tSPN\n')
#for line in pronvar_list_all:
# f_lexicon_txt.write('{0}\t{1}\n'.format(line[0].lower(), line[1]))
#f_lexicon_txt.close()
## ======================= load kaldi forced alignment result =======================
if load_forced_alignment_kaldi:
kaldi_work_dir = r'C:\OneDrive\WSL\kaldi-trunk\egs\fame\s5'
phones_txt = kaldi_work_dir + '\\data\\lang\\phones.txt'
merged_alignment_txt = kaldi_work_dir + '\\exp\\tri1_alignme\\merged_alignment.txt'
filenames = np.load(data_dir + '\\filenames.npy')
words = np.load(data_dir + '\\words.npy')
pronunciations = np.load(data_dir + '\\pronunciations_ipa.npy')
pronvar_list_all = np.load(data_dir + '\\pronvar_list_all.npy')
word_list = np.unique(words)
# load the mapping between phones and ids.
with open(phones_txt, 'r', encoding="utf-8") as f:
mappings = f.read().split('\n')
phones = []
phone_ids = []
for m in mappings:
m = m.split(' ')
if len(m) > 1:
phones.append(m[0])
phone_ids.append(int(m[1]))
with open(merged_alignment_txt, 'r') as f:
lines = f.read()
lines = lines.split('\n')
fa_filenames = []
fa_pronunciations = []
filename_ = ''
pron = []
for line in lines:
line = line.split(' ')
if len(line) == 5:
filename = line[0]
if filename == filename_:
phone_id = int(line[4])
#if not phone_id == 1:
phone = phones[phone_ids.index(phone_id)]
pron_ = re.sub(r'_[A-Z]', '', phone)
if not pron_ == 'SIL':
pron.append(pron_)
else:
fa_filenames.append(re.sub(r'speaker_[0-9]{4}-', '', filename))
fa_pronunciations.append(' '.join(pron))
pron = []
filename_ = filename
# correct or not.
#for filename, fa_pronunciation in zip(fa_filenames, fa_pronunciations):
predictions = np.array(predictions)
match = np.c_[words[predictions != ''], pronunciations[predictions != ''], predictions[predictions != '']]
np.save(data_dir + '\\match_hmm' + hmm_num_str + '.npy', match)
## ======================= evaluate the result of forced alignment ======================= ## ======================= evaluate the result of forced alignment =======================
if eval_forced_alignment: if eval_forced_alignment:
match_num = []
for hmm_num in [1, 2, 4, 8, 16, 32, 64, 128, 256]:
#hmm_num = 256
hmm_num_str = str(hmm_num)
match = np.load(data_dir + '\\match_hmm' + hmm_num_str + '.npy')
# use dic_short? #for hmm_num in [1, 2, 4, 8, 16, 32, 64]:
if 1: hmm_num = 64
pronunciation_variants = np.array(['WORD', 'pronunciation']).reshape(1, 2) hmm_num_str = str(hmm_num)
for word in word_list: match = np.load(data_dir + '\\match_hmm' + hmm_num_str + '.npy')
fileDic = experiments_dir + r'\stimmen\dic_top3' + '\\' + word + '.dic'
pronunciation_variants = np.r_[pronunciation_variants, pyHTK.loadHTKdic(fileDic)]
# see only words which appears in top 3. # use dic_short?
match_short = [] if 1:
for line in match: pronunciation_variants = np.array(['WORD', 'pronunciation']).reshape(1, 2)
word = line[0] for word in word_list:
WORD = word.upper() fileDic = experiments_dir + r'\stimmen\dic_short' + '\\' + word + '.dic'
pronvar = pronunciation_variants[pronunciation_variants[:, 0] == word.upper(), 1] pronunciation_variants = np.r_[pronunciation_variants, pyHTK.loadHTKdic(fileDic)]
if line[1] in pronvar: match_short = []
match_short.append(line) for line in match:
word = line[0]
WORD = word.upper()
pronvar = pronunciation_variants[pronunciation_variants[:, 0] == word.upper(), 1]
match_short = np.array(match_short) if line[1] in pronvar:
match = np.copy(match_short) match_short.append(line)
# number of match match_short = np.array(match_short)
total_match = sum(match[:, 1] == match[:, 2]) match = np.copy(match_short)
print("{}: {}/{}".format(hmm_num_str, total_match, match.shape[0]))
match_num.append([hmm_num, total_match, match.shape[0]])
# number of match
total_match = sum(match[:, 1] == match[:, 2])
print("{}: {}/{}".format(hmm_num_str, total_match, match.shape[0]))
# number of mixtures vs accuracy
match_num = np.array(match_num)
plt.xscale("log")
plt.plot(match_num[:, 0], match_num[:, 1]/match_num[0, 2], 'o-')
plt.xlabel('number of mixtures', fontsize=14, fontweight='bold')
plt.ylabel('accuracy', fontsize=14, fontweight='bold')
plt.show()
# confusion matrix
#dir_out = r'C:\OneDrive\Research\rug\experiments\stimmen\result'
#word_list = np.unique(match[:, 0])
#for word in word_list:
# match_ = match[match[:, 0] == word, :]
# cm = confusion_matrix(match_[:, 1], match_[:, 2])
# pronvar = pronunciation_variants[pronunciation_variants[:, 0] == word.upper(), 1]
# plt.figure()
# plot_confusion_matrix(cm, classes=pronvar, normalize=True)
# plt.savefig(dir_out + '\\cm_' + word + '.png')