opschonen van scripts. Update van saliency visualisatie.
This commit is contained in:
parent
02d5b371d6
commit
01f458d0db
|
@ -42,7 +42,7 @@ INPUT_SHAPE = (192, 192, 24, len(SERIES))
|
|||
IMAGE_SHAPE = INPUT_SHAPE[:3]
|
||||
|
||||
DATA_SPLIT_INDEX = read_yaml_to_dict('./../data/Nijmegen paths/train_val_test_idxs.yml')
|
||||
TEST_INDEX = DATA_SPLIT_INDEX['val_set0']
|
||||
TEST_INDEX = DATA_SPLIT_INDEX['test_set0']
|
||||
|
||||
N_CPUS = 12
|
||||
|
||||
|
|
|
@ -1,53 +1,60 @@
|
|||
import sys
|
||||
import argparse
|
||||
from os import path
|
||||
import SimpleITK as sitk
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras.models import load_model
|
||||
from focal_loss import BinaryFocalLoss
|
||||
import json
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
from sfransen.Saliency.base import *
|
||||
from sfransen.Saliency.integrated_gradients import *
|
||||
from sfransen.utils_quintin import *
|
||||
from sfransen.DWI_exp import preprocess
|
||||
from sfransen.DWI_exp.helpers import *
|
||||
from sfransen.DWI_exp.callbacks import dice_coef
|
||||
from sfransen.FROC.blob_preprocess import *
|
||||
from sfransen.FROC.cal_froc_from_np import *
|
||||
from sfransen.load_images import load_images_parrallel
|
||||
from sfransen.Saliency.base import *
|
||||
from sfransen.Saliency.integrated_gradients import *
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Calculate the froc metrics and store in froc_metrics.yml')
|
||||
parser.add_argument('-experiment',
|
||||
help='Title of experiment')
|
||||
parser.add_argument('--series', '-s',
|
||||
metavar='[series_name]', required=True, nargs='+',
|
||||
help='List of series to include')
|
||||
args = parser.parse_args()
|
||||
|
||||
######## CUDA ################
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
|
||||
|
||||
######## constants #############
|
||||
SERIES = args.series
|
||||
series_ = '_'.join(args.series)
|
||||
EXPERIMENT = args.experiment
|
||||
|
||||
MODEL_PATH = f'./../train_output/{EXPERIMENT}_{series_}/models/{EXPERIMENT}_{series_}.h5'
|
||||
YAML_DIR = f'./../train_output/{EXPERIMENT}_{series_}'
|
||||
|
||||
# train_10h_t2_b50_b400_b800_b1400_adc
|
||||
SERIES = ['t2','b50','b400','b800','b1400','adc']
|
||||
MODEL_PATH = f'./../train_output/train_10h_t2_b50_b400_b800_b1400_adc/models/train_10h_t2_b50_b400_b800_b1400_adc.h5'
|
||||
YAML_DIR = f'./../train_output/train_10h_t2_b50_b400_b800_b1400_adc'
|
||||
################ constants ############
|
||||
DATA_DIR = "./../data/Nijmegen paths/"
|
||||
TARGET_SPACING = (0.5, 0.5, 3)
|
||||
INPUT_SHAPE = (192, 192, 24, len(SERIES))
|
||||
IMAGE_SHAPE = INPUT_SHAPE[:3]
|
||||
|
||||
# import val_indx
|
||||
# DATA_SPLIT_INDEX = read_yaml_to_dict('./../data/Nijmegen paths/train_val_test_idxs.yml')
|
||||
# TEST_INDEX = DATA_SPLIT_INDEX['val_set0']
|
||||
froc_metrics = read_yaml_to_dict(f'{YAML_DIR}/froc_metrics.yml')
|
||||
top_10_idx = np.argsort(froc_metrics['roc_pred'])[-1 :]
|
||||
|
||||
experiment_path = f'./../train_output/train_10h_t2_b50_b400_b800_b1400_adc/froc_metrics.yml'
|
||||
experiment_metrics = read_yaml_to_dict(experiment_path)
|
||||
DATA_SPLIT_INDEX = read_yaml_to_dict('./../data/Nijmegen paths/train_val_test_idxs.yml')
|
||||
TEST_INDEX = DATA_SPLIT_INDEX['test_set0']
|
||||
|
||||
top_10_idx = np.argsort(experiment_metrics['roc_pred'])[-10:]
|
||||
TEST_INDEX = [TEST_INDEX[i] for i in top_10_idx]
|
||||
TEST_INDEX_top10 = [TEST_INDEX[i] for i in top_10_idx]
|
||||
|
||||
########## load images ##############
|
||||
images, image_paths = {s: [] for s in SERIES}, {}
|
||||
segmentations = []
|
||||
N_CPUS = 12
|
||||
|
||||
########## load images in parrallel ##############
|
||||
print_(f"> Loading images into RAM...")
|
||||
|
||||
# read paths from txt
|
||||
image_paths = {}
|
||||
for s in SERIES:
|
||||
with open(path.join(DATA_DIR, f"{s}.txt"), 'r') as f:
|
||||
image_paths[s] = [l.strip() for l in f.readlines()]
|
||||
|
@ -55,45 +62,52 @@ with open(path.join(DATA_DIR, f"seg.txt"), 'r') as f:
|
|||
seg_paths = [l.strip() for l in f.readlines()]
|
||||
num_images = len(seg_paths)
|
||||
|
||||
# Read and preprocess each of the paths for each SERIES, and the segmentations.
|
||||
for img_idx in TEST_INDEX[:5]: #for less images
|
||||
img_s = {s: sitk.ReadImage(image_paths[s][img_idx], sitk.sitkFloat32)
|
||||
for s in SERIES}
|
||||
seg_s = sitk.ReadImage(seg_paths[img_idx], sitk.sitkFloat32)
|
||||
img_n, seg_n = preprocess(img_s, seg_s,
|
||||
shape=IMAGE_SHAPE, spacing=TARGET_SPACING)
|
||||
for seq in img_n:
|
||||
images[seq].append(img_n[seq])
|
||||
segmentations.append(seg_n)
|
||||
# create pool of workers
|
||||
pool = multiprocessing.Pool(processes=N_CPUS)
|
||||
partial_images = partial(load_images_parrallel,
|
||||
seq = 'images',
|
||||
target_shape=IMAGE_SHAPE,
|
||||
target_space = TARGET_SPACING)
|
||||
partial_seg = partial(load_images_parrallel,
|
||||
seq = 'seg',
|
||||
target_shape=IMAGE_SHAPE,
|
||||
target_space = TARGET_SPACING)
|
||||
|
||||
images_list = [images[s] for s in images.keys()]
|
||||
images_list = np.transpose(images_list, (1, 2, 3, 4, 0))
|
||||
#load images
|
||||
images = []
|
||||
for s in SERIES:
|
||||
image_paths_seq = image_paths[s]
|
||||
image_paths_index = np.asarray(image_paths_seq)[TEST_INDEX_top10]
|
||||
data_list = pool.map(partial_images,image_paths_index)
|
||||
data = np.stack(data_list, axis=0)
|
||||
images.append(data)
|
||||
|
||||
images_list = np.transpose(images, (1, 2, 3, 4, 0))
|
||||
|
||||
#load segmentations
|
||||
seg_paths_index = np.asarray(seg_paths)[TEST_INDEX_top10]
|
||||
data_list = pool.map(partial_seg,seg_paths_index)
|
||||
segmentations = np.stack(data_list, axis=0)
|
||||
|
||||
########### load module ##################
|
||||
print(' >>>>>>> LOAD MODEL <<<<<<<<<')
|
||||
|
||||
dependencies = {
|
||||
'dice_coef': dice_coef
|
||||
}
|
||||
reconstructed_model = load_model(MODEL_PATH, custom_objects=dependencies)
|
||||
|
||||
# reconstructed_model.layers[-1].activation = tf.keras.activations.linear
|
||||
|
||||
print('START prediction')
|
||||
######### Build Saliency heatmap ##############
|
||||
print(' >>>>>>> Build saliency map <<<<<<<<<')
|
||||
|
||||
ig = IntegratedGradients(reconstructed_model)
|
||||
saliency_map = []
|
||||
for img_idx in range(len(images_list)):
|
||||
input_img = np.resize(images_list[img_idx],(1,192,192,24,len(SERIES)))
|
||||
saliency_map.append(ig.get_mask(input_img).numpy())
|
||||
print("size saliency map is:",np.shape(saliency_map))
|
||||
|
||||
np.save('saliency',saliency_map)
|
||||
|
||||
# Christian Roest, [11-3-2022 15:30]
|
||||
# input_img heeft dimensies (1, 48, 48, 8, 8)
|
||||
|
||||
# reconstructed_model.summary(line_length=120)
|
||||
|
||||
# make predictions on all val_indx
|
||||
print('START saliency')
|
||||
# predictions_blur = reconstructed_model.predict(images_list, batch_size=1)
|
||||
|
||||
print("size saliency map",np.shape(saliency_map))
|
||||
np.save(f'{YAML_DIR}/saliency',saliency_map)
|
||||
np.save(f'{YAML_DIR}/images_list',images_list)
|
||||
np.save(f'{YAML_DIR}/segmentations',segmentations)
|
|
@ -1,90 +1,57 @@
|
|||
import argparse
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.cm as cm
|
||||
# import matplotlib.cm as cm
|
||||
|
||||
heatmap = np.load('saliency.npy')
|
||||
print(np.shape(heatmap))
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Calculate the froc metrics and store in froc_metrics.yml')
|
||||
parser.add_argument('-experiment',
|
||||
help='Title of experiment')
|
||||
parser.add_argument('--series', '-s',
|
||||
metavar='[series_name]', required=True, nargs='+',
|
||||
help='List of series to include')
|
||||
args = parser.parse_args()
|
||||
|
||||
########## constants #################
|
||||
SERIES = args.series
|
||||
series_ = '_'.join(args.series)
|
||||
EXPERIMENT = args.experiment
|
||||
SALIENCY_DIR = f'./../train_output/{EXPERIMENT}_{series_}/saliency.npy'
|
||||
IMAGES_DIR = f'./../train_output/{EXPERIMENT}_{series_}/images_list.npy'
|
||||
SEGMENTATION_DIR = f'./../train_output/{EXPERIMENT}_{series_}/segmentations.npy'
|
||||
|
||||
########## load saliency map ############
|
||||
heatmap = np.load(SALIENCY_DIR)
|
||||
heatmap = np.squeeze(heatmap)
|
||||
|
||||
######### load images and segmentations ###########
|
||||
images_list = np.load(IMAGES_DIR)
|
||||
images_list = np.squeeze(images_list)
|
||||
segmentations = np.load(SEGMENTATION_DIR)
|
||||
######## take average ##########
|
||||
# len(heatmap) is smaller then maximum number of images
|
||||
# if len(heatmap) < 100:
|
||||
# heatmap = np.mean(abs(heatmap),axis=0)
|
||||
heatmap = abs(heatmap)
|
||||
|
||||
fig, axes = plt.subplots(2,len(SERIES))
|
||||
print(np.shape(axes))
|
||||
print(np.shape(heatmap))
|
||||
|
||||
|
||||
### take average over 5 #########
|
||||
heatmap = np.mean(abs(heatmap),axis=0)
|
||||
print(np.shape(heatmap))
|
||||
|
||||
SERIES = ['t2','b50','b400','b800','b1400','adc']
|
||||
fig, axes = plt.subplots(1,6)
|
||||
print(np.shape(images_list))
|
||||
max_value = np.amax(heatmap)
|
||||
pri
|
||||
min_value = np.amin(heatmap)
|
||||
# vmin vmax van hele heatmap voor scaling in imshow
|
||||
# cmap naar grey
|
||||
|
||||
im = axes[0].imshow(np.squeeze(heatmap[:,:,12,0]))
|
||||
axes[1].imshow(np.squeeze(heatmap[:,:,12,1]), vmin=min_value, vmax=max_value)
|
||||
axes[2].imshow(np.squeeze(heatmap[:,:,12,2]), vmin=min_value, vmax=max_value)
|
||||
axes[3].imshow(np.squeeze(heatmap[:,:,12,3]), vmin=min_value, vmax=max_value)
|
||||
axes[4].imshow(np.squeeze(heatmap[:,:,12,4]), vmin=min_value, vmax=max_value)
|
||||
axes[5].imshow(np.squeeze(heatmap[:,:,12,5]), vmin=min_value, vmax=max_value)
|
||||
|
||||
axes[0].set_title("t2")
|
||||
axes[1].set_title("b50")
|
||||
axes[2].set_title("b400")
|
||||
axes[3].set_title("b800")
|
||||
axes[4].set_title("b1400")
|
||||
axes[5].set_title("adc")
|
||||
for indx in range(len(SERIES)):
|
||||
print(indx)
|
||||
axes[0,indx].imshow(images_list[:,:,12,indx],cmap='gray')
|
||||
im = axes[1,indx].imshow(np.squeeze(heatmap[:,:,12,indx]),vmin=min_value, vmax=max_value)
|
||||
axes[0,indx].set_title(SERIES[indx])
|
||||
axes[0,indx].set_axis_off()
|
||||
axes[1,indx].set_axis_off()
|
||||
|
||||
cbar = fig.colorbar(im, ax=axes.ravel().tolist(), shrink=0.5, orientation='horizontal')
|
||||
cbar.set_ticks([-0.1,0,0.1])
|
||||
cbar.set_ticklabels(['less importance', '0', 'important'])
|
||||
fig.suptitle('Average saliency maps over the 5 highest predictions', fontsize=16)
|
||||
plt.show()
|
||||
cbar.set_ticks([min_value,max_value])
|
||||
cbar.set_ticklabels(['less important', 'important'])
|
||||
fig.suptitle('Saliency map', fontsize=16)
|
||||
plt.savefig(f'./../train_output/{EXPERIMENT}_{series_}/saliency_map.png', dpi=300)
|
||||
|
||||
quit()
|
||||
|
||||
#take one image out
|
||||
heatmap = np.squeeze(heatmap[0])
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Fixing random state for reproducibility
|
||||
np.random.seed(19680801)
|
||||
|
||||
|
||||
class IndexTracker:
|
||||
def __init__(self, ax, X):
|
||||
self.ax = ax
|
||||
ax.set_title('use scroll wheel to navigate images')
|
||||
|
||||
self.X = X
|
||||
rows, cols, self.slices = X.shape
|
||||
self.ind = self.slices//2
|
||||
|
||||
self.im = ax.imshow(self.X[:, :, self.ind], cmap='jet')
|
||||
self.update()
|
||||
|
||||
def on_scroll(self, event):
|
||||
print("%s %s" % (event.button, event.step))
|
||||
if event.button == 'up':
|
||||
self.ind = (self.ind + 1) % self.slices
|
||||
else:
|
||||
self.ind = (self.ind - 1) % self.slices
|
||||
self.update()
|
||||
|
||||
def update(self):
|
||||
self.im.set_data(self.X[:, :, self.ind])
|
||||
self.ax.set_ylabel('slice %s' % self.ind)
|
||||
self.im.axes.figure.canvas.draw()
|
||||
|
||||
plt.figure(0)
|
||||
fig, ax = plt.subplots(1, 1)
|
||||
tracker = IndexTracker(ax, heatmap[:,:,:,5])
|
||||
fig.canvas.mpl_connect('scroll_event', tracker.on_scroll)
|
||||
plt.show()
|
||||
|
||||
plt.figure(1)
|
||||
fig, ax = plt.subplots(1, 1)
|
||||
tracker = IndexTracker(ax, heatmap[:,:,:,3])
|
||||
fig.canvas.mpl_connect('scroll_event', tracker.on_scroll)
|
||||
plt.show()
|
||||
|
|
|
@ -0,0 +1,48 @@
|
|||
|
||||
quit()
|
||||
#take one image out
|
||||
heatmap = np.squeeze(heatmap[0])
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Fixing random state for reproducibility
|
||||
np.random.seed(19680801)
|
||||
|
||||
|
||||
class IndexTracker:
|
||||
def __init__(self, ax, X):
|
||||
self.ax = ax
|
||||
ax.set_title('use scroll wheel to navigate images')
|
||||
|
||||
self.X = X
|
||||
rows, cols, self.slices = X.shape
|
||||
self.ind = self.slices//2
|
||||
|
||||
self.im = ax.imshow(self.X[:, :, self.ind], cmap='jet')
|
||||
self.update()
|
||||
|
||||
def on_scroll(self, event):
|
||||
print("%s %s" % (event.button, event.step))
|
||||
if event.button == 'up':
|
||||
self.ind = (self.ind + 1) % self.slices
|
||||
else:
|
||||
self.ind = (self.ind - 1) % self.slices
|
||||
self.update()
|
||||
|
||||
def update(self):
|
||||
self.im.set_data(self.X[:, :, self.ind])
|
||||
self.ax.set_ylabel('slice %s' % self.ind)
|
||||
self.im.axes.figure.canvas.draw()
|
||||
|
||||
plt.figure(0)
|
||||
fig, ax = plt.subplots(1, 1)
|
||||
tracker = IndexTracker(ax, heatmap[:,:,:,5])
|
||||
fig.canvas.mpl_connect('scroll_event', tracker.on_scroll)
|
||||
plt.show()
|
||||
|
||||
plt.figure(1)
|
||||
fig, ax = plt.subplots(1, 1)
|
||||
tracker = IndexTracker(ax, heatmap[:,:,:,3])
|
||||
fig.canvas.mpl_connect('scroll_event', tracker.on_scroll)
|
||||
plt.show()
|
Loading…
Reference in New Issue