opschonen van scripts. Update van saliency visualisatie.
This commit is contained in:
@ -1,90 +1,57 @@
|
||||
import argparse
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.cm as cm
|
||||
# import matplotlib.cm as cm
|
||||
|
||||
heatmap = np.load('saliency.npy')
|
||||
print(np.shape(heatmap))
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Calculate the froc metrics and store in froc_metrics.yml')
|
||||
parser.add_argument('-experiment',
|
||||
help='Title of experiment')
|
||||
parser.add_argument('--series', '-s',
|
||||
metavar='[series_name]', required=True, nargs='+',
|
||||
help='List of series to include')
|
||||
args = parser.parse_args()
|
||||
|
||||
########## constants #################
|
||||
SERIES = args.series
|
||||
series_ = '_'.join(args.series)
|
||||
EXPERIMENT = args.experiment
|
||||
SALIENCY_DIR = f'./../train_output/{EXPERIMENT}_{series_}/saliency.npy'
|
||||
IMAGES_DIR = f'./../train_output/{EXPERIMENT}_{series_}/images_list.npy'
|
||||
SEGMENTATION_DIR = f'./../train_output/{EXPERIMENT}_{series_}/segmentations.npy'
|
||||
|
||||
########## load saliency map ############
|
||||
heatmap = np.load(SALIENCY_DIR)
|
||||
heatmap = np.squeeze(heatmap)
|
||||
|
||||
######### load images and segmentations ###########
|
||||
images_list = np.load(IMAGES_DIR)
|
||||
images_list = np.squeeze(images_list)
|
||||
segmentations = np.load(SEGMENTATION_DIR)
|
||||
######## take average ##########
|
||||
# len(heatmap) is smaller then maximum number of images
|
||||
# if len(heatmap) < 100:
|
||||
# heatmap = np.mean(abs(heatmap),axis=0)
|
||||
heatmap = abs(heatmap)
|
||||
|
||||
fig, axes = plt.subplots(2,len(SERIES))
|
||||
print(np.shape(axes))
|
||||
print(np.shape(heatmap))
|
||||
|
||||
|
||||
### take average over 5 #########
|
||||
heatmap = np.mean(abs(heatmap),axis=0)
|
||||
print(np.shape(heatmap))
|
||||
|
||||
SERIES = ['t2','b50','b400','b800','b1400','adc']
|
||||
fig, axes = plt.subplots(1,6)
|
||||
print(np.shape(images_list))
|
||||
max_value = np.amax(heatmap)
|
||||
pri
|
||||
min_value = np.amin(heatmap)
|
||||
# vmin vmax van hele heatmap voor scaling in imshow
|
||||
# cmap naar grey
|
||||
|
||||
im = axes[0].imshow(np.squeeze(heatmap[:,:,12,0]))
|
||||
axes[1].imshow(np.squeeze(heatmap[:,:,12,1]), vmin=min_value, vmax=max_value)
|
||||
axes[2].imshow(np.squeeze(heatmap[:,:,12,2]), vmin=min_value, vmax=max_value)
|
||||
axes[3].imshow(np.squeeze(heatmap[:,:,12,3]), vmin=min_value, vmax=max_value)
|
||||
axes[4].imshow(np.squeeze(heatmap[:,:,12,4]), vmin=min_value, vmax=max_value)
|
||||
axes[5].imshow(np.squeeze(heatmap[:,:,12,5]), vmin=min_value, vmax=max_value)
|
||||
|
||||
axes[0].set_title("t2")
|
||||
axes[1].set_title("b50")
|
||||
axes[2].set_title("b400")
|
||||
axes[3].set_title("b800")
|
||||
axes[4].set_title("b1400")
|
||||
axes[5].set_title("adc")
|
||||
for indx in range(len(SERIES)):
|
||||
print(indx)
|
||||
axes[0,indx].imshow(images_list[:,:,12,indx],cmap='gray')
|
||||
im = axes[1,indx].imshow(np.squeeze(heatmap[:,:,12,indx]),vmin=min_value, vmax=max_value)
|
||||
axes[0,indx].set_title(SERIES[indx])
|
||||
axes[0,indx].set_axis_off()
|
||||
axes[1,indx].set_axis_off()
|
||||
|
||||
cbar = fig.colorbar(im, ax=axes.ravel().tolist(), shrink=0.5, orientation='horizontal')
|
||||
cbar.set_ticks([-0.1,0,0.1])
|
||||
cbar.set_ticklabels(['less importance', '0', 'important'])
|
||||
fig.suptitle('Average saliency maps over the 5 highest predictions', fontsize=16)
|
||||
plt.show()
|
||||
cbar.set_ticks([min_value,max_value])
|
||||
cbar.set_ticklabels(['less important', 'important'])
|
||||
fig.suptitle('Saliency map', fontsize=16)
|
||||
plt.savefig(f'./../train_output/{EXPERIMENT}_{series_}/saliency_map.png', dpi=300)
|
||||
|
||||
quit()
|
||||
|
||||
#take one image out
|
||||
heatmap = np.squeeze(heatmap[0])
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Fixing random state for reproducibility
|
||||
np.random.seed(19680801)
|
||||
|
||||
|
||||
class IndexTracker:
|
||||
def __init__(self, ax, X):
|
||||
self.ax = ax
|
||||
ax.set_title('use scroll wheel to navigate images')
|
||||
|
||||
self.X = X
|
||||
rows, cols, self.slices = X.shape
|
||||
self.ind = self.slices//2
|
||||
|
||||
self.im = ax.imshow(self.X[:, :, self.ind], cmap='jet')
|
||||
self.update()
|
||||
|
||||
def on_scroll(self, event):
|
||||
print("%s %s" % (event.button, event.step))
|
||||
if event.button == 'up':
|
||||
self.ind = (self.ind + 1) % self.slices
|
||||
else:
|
||||
self.ind = (self.ind - 1) % self.slices
|
||||
self.update()
|
||||
|
||||
def update(self):
|
||||
self.im.set_data(self.X[:, :, self.ind])
|
||||
self.ax.set_ylabel('slice %s' % self.ind)
|
||||
self.im.axes.figure.canvas.draw()
|
||||
|
||||
plt.figure(0)
|
||||
fig, ax = plt.subplots(1, 1)
|
||||
tracker = IndexTracker(ax, heatmap[:,:,:,5])
|
||||
fig.canvas.mpl_connect('scroll_event', tracker.on_scroll)
|
||||
plt.show()
|
||||
|
||||
plt.figure(1)
|
||||
fig, ax = plt.subplots(1, 1)
|
||||
tracker = IndexTracker(ax, heatmap[:,:,:,3])
|
||||
fig.canvas.mpl_connect('scroll_event', tracker.on_scroll)
|
||||
plt.show()
|
||||
|
Reference in New Issue
Block a user