This commit is contained in:
Stefan
2022-09-15 13:19:22 +02:00
parent e3b84db978
commit 49b18fe7f0
7 changed files with 433 additions and 4 deletions

View File

@@ -44,9 +44,9 @@ class SaliencyMap():
with tf.GradientTape() as tape:
tape.watch(image)
preds = self.model(image)
print("get_gradients, size of preds",np.shape(preds))
# print("get_gradients, size of preds",np.shape(preds))
top_class = preds[:]
print("get_gradients, size of top_class",np.shape(top_class))
# print("get_gradients, size of top_class",np.shape(top_class))
grads = tape.gradient(top_class, image)

View File

@@ -0,0 +1,86 @@
import os
import numpy as np
from PIL import Image
import matplotlib
import matplotlib.pyplot as plt
import scipy.ndimage as ndimage
class HeatMap:
def __init__(self,image,heat_map,gaussian_std=10):
#if image is numpy array
if isinstance(image,np.ndarray):
height = image.shape[0]
width = image.shape[1]
self.image = image
else:
#PIL open the image path, record the height and width
image = Image.open(image)
width, height = image.size
self.image = image
#Convert numpy heat_map values into image formate for easy upscale
#Rezie the heat_map to the size of the input image
#Apply the gausian filter for smoothing
#Convert back to numpy
heatmap_image = Image.fromarray(heat_map*255)
heatmap_image_resized = heatmap_image.resize((width,height))
heatmap_image_resized = ndimage.gaussian_filter(heatmap_image_resized,
sigma=(gaussian_std, gaussian_std),
order=0)
heatmap_image_resized = np.asarray(heatmap_image_resized)
self.heat_map = heatmap_image_resized
#Plot the figure
def plot(self,transparency=0.7,color_map='bwr',
show_axis=False, show_original=False, show_colorbar=False,width_pad=0):
#If show_original is True, then subplot first figure as orginal image
#Set x,y to let the heatmap plot in the second subfigure,
#otherwise heatmap will plot in the first sub figure
if show_original:
plt.subplot(1, 2, 1)
if not show_axis:
plt.axis('off')
plt.imshow(self.image,cmap='gray')
x,y=2,2
else:
x,y=1,1
#Plot the heatmap
plt.subplot(1,x,y)
if not show_axis:
plt.axis('off')
plt.imshow(self.image,cmap='gray')
plt.imshow(self.heat_map/255, alpha=transparency, cmap=color_map)
if show_colorbar:
plt.colorbar()
plt.tight_layout(w_pad=width_pad)
plt.show()
###Save the figure
def save(self,filename,format='png',save_path=os.getcwd(),
transparency=0.7,color_map='bwr',width_pad = -10,
show_axis=False, show_original=False, show_colorbar=False, **kwargs):
if show_original:
plt.subplot(1, 2, 1)
if not show_axis:
plt.axis('off')
plt.imshow(self.image,cmap='gray')
x,y=2,2
else:
x,y=1,1
#Plot the heatmap
plt.subplot(1,x,y)
if not show_axis:
plt.axis('off')
plt.imshow(self.image,cmap='gray')
plt.imshow(self.heat_map/255, alpha=transparency, cmap=color_map, caxis = [min(nonzeros(self.image)) max(nonzeros(self.image))])
if show_colorbar:
plt.colorbar()
plt.tight_layout(w_pad=width_pad)
plt.savefig(os.path.join(save_path,filename+'.'+format),
format=format,
bbox_inches='tight',
pad_inches = 0, **kwargs)
print('{}.{} has been successfully saved to {}'.format(filename,format,save_path))

View File

@@ -5,7 +5,7 @@ from sfransen.Saliency.base import SaliencyMap
class IntegratedGradients(SaliencyMap):
def get_mask(self, image, baseline=None, num_steps=4):
def get_mask(self, image, baseline=None, num_steps=3):
"""Computes Integrated Gradients for a predicted label.
Args:
@@ -38,7 +38,7 @@ class IntegratedGradients(SaliencyMap):
grads = []
for i, img in enumerate(interpolated_image):
print(f"interpolation step:",i," out of {num_steps}")
# print(f"interpolation step:",i,f" out of {num_steps}")
img = tf.expand_dims(img, axis=0)
grad = self.get_gradients(img)
grads.append(grad[0])