This commit is contained in:
Stefan 2022-09-15 13:19:22 +02:00
parent e3b84db978
commit 49b18fe7f0
7 changed files with 433 additions and 4 deletions

View File

@ -27,6 +27,9 @@ parser.add_argument('--series', '-s',
help='List of series to include')
args = parser.parse_args()
## info: adjust number of interpolation steps to 10 in scr/**/saliency/integrated_gradients.py
######## CUDA ################
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

160
scripts/20.saliency_exp.py Executable file
View File

@ -0,0 +1,160 @@
import argparse
from os import path
import SimpleITK as sitk
import tensorflow as tf
from tensorflow.keras.models import load_model
import numpy as np
import os
from sfransen.utils_quintin import *
from sfransen.DWI_exp import preprocess
from sfransen.DWI_exp.helpers import *
from sfransen.DWI_exp.callbacks import dice_coef
from sfransen.DWI_exp.losses import weighted_binary_cross_entropy
from sfransen.FROC.blob_preprocess import *
from sfransen.FROC.cal_froc_from_np import *
from sfransen.load_images import load_images_parrallel
from sfransen.Saliency.base import *
from sfransen.Saliency.integrated_gradients import *
parser = argparse.ArgumentParser(
description='Calculate the froc metrics and store in froc_metrics.yml')
parser.add_argument('-experiment',
help='Title of experiment')
parser.add_argument('--series', '-s',
metavar='[series_name]', required=True, nargs='+',
help='List of series to include')
args = parser.parse_args()
def print_p(*args, **kwargs):
"""
Shorthand for print(..., flush=True)
Useful on HPC cluster where output has buffered writes.
"""
print(*args, **kwargs, flush=True)
######## CUDA ################
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
######## constants #############
SERIES = args.series
series_ = '_'.join(args.series)
EXPERIMENT = args.experiment
DATA_DIR = "./../data/Nijmegen paths/"
TARGET_SPACING = (0.5, 0.5, 3)
INPUT_SHAPE = (192, 192, 24, len(SERIES))
IMAGE_SHAPE = INPUT_SHAPE[:3]
image_paths = {}
for s in SERIES:
with open(path.join(DATA_DIR, f"{s}.txt"), 'r') as f:
image_paths[s] = [l.strip() for l in f.readlines()]
with open(path.join(DATA_DIR, f"seg.txt"), 'r') as f:
seg_paths = [l.strip() for l in f.readlines()]
num_images = len(seg_paths)
max_saliency_values = []
for fold in range(5):
print_p("fold:",fold)
# model path
MODEL_PATH = f'./../train_output/{EXPERIMENT}_{series_}_{fold}/models/{EXPERIMENT}_{series_}_{fold}.h5'
YAML_DIR = f'./../train_output/{EXPERIMENT}_{series_}_{fold}'
IMAGE_DIR = f'./../train_output/{EXPERIMENT}_{series_}_{fold}'
# test indices
DATA_SPLIT_INDEX = read_yaml_to_dict(f'./../data/Nijmegen paths/train_val_test_idxs_{fold}.yml')
TEST_INDEX_IMGS = DATA_SPLIT_INDEX['test_set0']
for img_idx in TEST_INDEX_IMGS[:10]:
print_p("img_idx:",img_idx)
images = []
images_list = []
segmentations = []
saliency_map = []
# Read and preprocess each of the paths for each series, and the segmentations.
# print('images number',[TEST_INDEX[img_idx]])
img_s = {f'{s}': sitk.ReadImage(image_paths[s][img_idx], sitk.sitkFloat32) for s in SERIES}
seg_s = sitk.ReadImage(seg_paths[img_idx], sitk.sitkFloat32)
img_n, seg_n = preprocess(img_s, seg_s,
shape=IMAGE_SHAPE, spacing=TARGET_SPACING)
for seq in img_n:
images.append(img_n[f'{seq}'])
images_list.append(images)
images = []
segmentations.append(seg_n)
images_list = np.transpose(images_list, (0, 2, 3, 4, 1))
########### load module ##################
# print(' >>>>>>> LOAD MODEL <<<<<<<<<')
dependencies = {
'dice_coef': dice_coef,
'weighted_cross_entropy_fn':weighted_binary_cross_entropy
}
reconstructed_model = load_model(MODEL_PATH, custom_objects=dependencies)
# reconstructed_model.summary(line_length=120)
# make predictions on all TEST_INDEX
# print(' >>>>>>> START prediction <<<<<<<<<')
predictions_blur = reconstructed_model.predict(images_list, batch_size=1)
############# preprocess #################
# preprocess predictions by removing the blur and making individual blobs
# print('>>>>>>>> START preprocess')
def move_dims(arr):
# UMCG numpy dimensions convention: dims = (batch, width, heigth, depth)
# Joeran numpy dimensions convention: dims = (batch, depth, heigth, width)
arr = np.moveaxis(arr, 3, 1)
arr = np.moveaxis(arr, 3, 2)
return arr
# Joeran has his numpy arrays ordered differently.
predictions_blur = move_dims(np.squeeze(predictions_blur,axis=4))
segmentations = move_dims(segmentations)
# predictions = [preprocess_softmax(pred, threshold="dynamic")[0] for pred in predictions_blur]
predictions = predictions_blur
# print("the size of predictions is:",np.shape(predictions))
# Remove outer edges
zeros = np.zeros(np.shape(predictions))
test = predictions[:,2:-2,2:190,2:190]
zeros[:,2:-2,2:190,2:190] = test
predictions = zeros
# print(np.shape(predictions))
######### Build Saliency heatmap ##############
# print(' >>>>>>> Build saliency map <<<<<<<<<')
ig = IntegratedGradients(reconstructed_model)
for img_idx in range(len(images_list)):
# input_img = np.resize(images_list[img_idx],(1,192,192,24,len(SERIES)))
saliency_map.append(ig.get_mask(images_list).numpy())
# print("size saliency map",np.shape(saliency_map))
idx_max = np.argmax(np.mean(np.mean(np.mean(np.squeeze(saliency_map),axis=0),axis=0),axis=0))
max_saliency_values.append(idx_max)
print_p("max_saliency_values:",max_saliency_values)
t2_max = sum(map(lambda x : x == 0, max_saliency_values))
dwi_max = sum(map(lambda x : x == 1, max_saliency_values))
adc_max = sum(map(lambda x : x == 2, max_saliency_values))
print_p(f"max value in t2 is: {t2_max}")
print_p(f"max value in dwi is: {dwi_max}")
print_p(f"max value in adc is: {adc_max}")
# np.save(f'{YAML_DIR}/saliency_new23',saliency_map)
# np.save(f'{YAML_DIR}/images_list_new23',images_list)
# np.save(f'{YAML_DIR}/segmentations_new23',segmentations)
# np.save(f'{YAML_DIR}/predictions_new23',predictions)

View File

@ -0,0 +1,149 @@
from inspect import _ParameterKind
import SimpleITK as sitk
import tensorflow as tf
from tensorflow.keras.models import load_model
from focal_loss import BinaryFocalLoss
import numpy as np
import multiprocessing
from functools import partial
import os
from os import path
from tqdm import tqdm
import argparse
from sfransen.utils_quintin import *
from sfransen.DWI_exp.helpers import *
from sfransen.DWI_exp.preprocessing_function import preprocess
from sfransen.DWI_exp.callbacks import dice_coef
#from sfransen.FROC.blob_preprocess import *
from sfransen.FROC.cal_froc_from_np import *
from sfransen.load_images import load_images_parrallel
from sfransen.DWI_exp.losses import weighted_binary_cross_entropy
from umcglib.froc import *
from umcglib.binarize import dynamic_threshold
def print_p(*args, **kwargs):
"""
Shorthand for print(..., flush=True)
Useful on HPC cluster where output has buffered writes.
"""
print(*args, **kwargs, flush=True)
######## CUDA ################
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
N_CPUS = 12
DATA_DIR = "./../data/Nijmegen paths/"
TARGET_SPACING = (0.5, 0.5, 3)
INPUT_SHAPE = (192, 192, 24, 3)
IMAGE_SHAPE = INPUT_SHAPE[:3]
final_table = {}
difference = {}
for fold in range(5):
DATA_SPLIT_INDEX = read_yaml_to_dict(f'./../data/Nijmegen paths/train_val_test_idxs_{fold}.yml')
TEST_INDEX = DATA_SPLIT_INDEX['test_set0']
for img_idx in TEST_INDEX:
for model in ['b800','b400']:
image_paths = {}
predictions_added = []
segmentations_added = []
images = []
images_list = []
segmentations = []
if model is 'b800':
MODEL_PATH = f'./../train_output/calc_exp_t2_b1400calc2_adccalc2_{fold}/models/calc_exp_t2_b1400calc2_adccalc2_{fold}.h5'
# YAML_DIR = f'./../train_output/calc_exp_t2_b1400calc2_adccalc2_{fold}'
# IMAGE_DIR = f'./../train_output/calc_exp_t2_b1400calc2_adccalc2_{fold}'
SERIES = ['t2','b1400calc2','adccalc2']
if model is 'b400':
MODEL_PATH = f'./../train_output/calc_exp_t2_b1400calc3_adccalc3_{fold}/models/calc_exp_t2_b1400calc3_adccalc3_{fold}.h5'
SERIES = ['t2','b1400calc3','adccalc3']
for s in SERIES:
with open(path.join(DATA_DIR, f"{s}.txt"), 'r') as f:
image_paths[s] = [l.strip() for l in f.readlines()]
with open(path.join(DATA_DIR, f"seg.txt"), 'r') as f:
seg_paths = [l.strip() for l in f.readlines()]
num_images = len(seg_paths)
pat_id = os.path.basename(os.path.normpath(seg_paths[img_idx]))[:-7]
# print_p("pat_idx:",pat_id)
# Read and preprocess each of the paths for each series, and the segmentations.
# print('images number',[TEST_INDEX[img_idx]])
img_s = {f'{s}': sitk.ReadImage(image_paths[s][img_idx], sitk.sitkFloat32) for s in SERIES}
seg_s = sitk.ReadImage(seg_paths[img_idx], sitk.sitkFloat32)
img_n, seg_n = preprocess(img_s, seg_s,
shape=IMAGE_SHAPE, spacing=TARGET_SPACING)
for seq in img_n:
images.append(img_n[f'{seq}'])
images_list.append(images)
images = []
segmentations.append(seg_n)
images_list = np.transpose(images_list, (0, 2, 3, 4, 1))
########### load module ##################
# print(' >>>>>>> LOAD MODEL <<<<<<<<<')
dependencies = {
'dice_coef': dice_coef,
'weighted_cross_entropy_fn':weighted_binary_cross_entropy
}
reconstructed_model = load_model(MODEL_PATH, custom_objects=dependencies)
# reconstructed_model.summary(line_length=120)
# make predictions on all TEST_INDEX
# print(' >>>>>>> START prediction <<<<<<<<<')
predictions_blur = reconstructed_model.predict(images_list, batch_size=1)
############# preprocess #################
# preprocess predictions by removing the blur and making individual blobs
# print('>>>>>>>> START preprocess')
def move_dims(arr):
# UMCG numpy dimensions convention: dims = (batch, width, heigth, depth)
# Joeran numpy dimensions convention: dims = (batch, depth, heigth, width)
arr = np.moveaxis(arr, 3, 1)
arr = np.moveaxis(arr, 3, 2)
return arr
# Joeran has his numpy arrays ordered differently.
predictions_blur = move_dims(np.squeeze(predictions_blur,axis=4))
segmentations = move_dims(segmentations)
# predictions = [preprocess_softmax(pred, threshold="dynamic")[0] for pred in predictions_blur]
predictions = predictions_blur
# print("the size of predictions is:",np.shape(predictions))
# Remove outer edges
zeros = np.zeros(np.shape(predictions))
test = predictions[:,2:-2,2:190,2:190]
zeros[:,2:-2,2:190,2:190] = test
predictions = zeros
#make list of worst patient predictions
if model is 'b800':
final_table[pat_id] = [np.max(predictions)]
print_p(f'Max prediction of {pat_id} in b800 is {np.max(predictions)}')
if model is 'b400':
final_table[pat_id].append(np.max(predictions))
print_p(f'Max prediction of {pat_id} in b400 is {np.max(predictions)}')
difference[pat_id] = abs(np.diff(final_table[pat_id]))
sorted_difference = {k: v for k, v in sorted(difference.items(), key=lambda item: item[1])}
print_p(f'>>{fold}<<',sorted_difference)
sorted_differences = {k: v for k, v in sorted(difference.items(), key=lambda item: item[1])}
print_p('>>>>>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<')
print_p(sorted_differences)

31
scripts/test3.py Executable file
View File

@ -0,0 +1,31 @@
from glob import glob
from os.path import normpath, basename
import SimpleITK as sitk
def get_paths(main_dir):
all_niftis = glob(main_dir, recursive=True)
dwis_b800 = [i for i in all_niftis if ("diff" in i.lower() or "dwi" in i.lower()) and ("b-800" in i.lower() or "b800" in i.lower())]
dwis_b400 = [i for i in all_niftis if ("diff" in i.lower() or "dwi" in i.lower()) and ("b-400" in i.lower() or "b400" in i.lower())]
return dwis_b800, dwis_b400
pat_numbers = ['pat0132','pat0091','pat0352','pat0844','pat1006','pat0406','pat0128','pat0153','pat0062','pat0758','pat0932','pat0248','pat0129','pat0429','pat0181','pat0063','pat0674','pat0176','pat0366','pat0082']
load_path = '../../datasets/radboud_new/{pat_number}/2016/**/*.nii.gz'
for idx, pat_number in enumerate(pat_numbers):
dwis_b800,dwis_b400 = get_paths(f'../../datasets/radboud_new/{pat_number}/2016/**/*.nii.gz')
# load
dwi_b800 = sitk.ReadImage(dwis_b800, sitk.sitkFloat32)
dwi_b400 = sitk.ReadImage(dwis_b400, sitk.sitkFloat32)
# write
output_path_b800 = f'../temp/check_by_derya/{idx}_{pat_number}_b800.nii.gz'
output_path_b400 = f'../temp/check_by_derya/{idx}_{pat_number}_b400.nii.gz'
sitk.WriteImage(dwi_b800, output_path_b800)
sitk.WriteImage(dwi_b400, output_path_b400)

View File

@ -44,9 +44,9 @@ class SaliencyMap():
with tf.GradientTape() as tape:
tape.watch(image)
preds = self.model(image)
print("get_gradients, size of preds",np.shape(preds))
# print("get_gradients, size of preds",np.shape(preds))
top_class = preds[:]
print("get_gradients, size of top_class",np.shape(top_class))
# print("get_gradients, size of top_class",np.shape(top_class))
grads = tape.gradient(top_class, image)

View File

@ -0,0 +1,86 @@
import os
import numpy as np
from PIL import Image
import matplotlib
import matplotlib.pyplot as plt
import scipy.ndimage as ndimage
class HeatMap:
def __init__(self,image,heat_map,gaussian_std=10):
#if image is numpy array
if isinstance(image,np.ndarray):
height = image.shape[0]
width = image.shape[1]
self.image = image
else:
#PIL open the image path, record the height and width
image = Image.open(image)
width, height = image.size
self.image = image
#Convert numpy heat_map values into image formate for easy upscale
#Rezie the heat_map to the size of the input image
#Apply the gausian filter for smoothing
#Convert back to numpy
heatmap_image = Image.fromarray(heat_map*255)
heatmap_image_resized = heatmap_image.resize((width,height))
heatmap_image_resized = ndimage.gaussian_filter(heatmap_image_resized,
sigma=(gaussian_std, gaussian_std),
order=0)
heatmap_image_resized = np.asarray(heatmap_image_resized)
self.heat_map = heatmap_image_resized
#Plot the figure
def plot(self,transparency=0.7,color_map='bwr',
show_axis=False, show_original=False, show_colorbar=False,width_pad=0):
#If show_original is True, then subplot first figure as orginal image
#Set x,y to let the heatmap plot in the second subfigure,
#otherwise heatmap will plot in the first sub figure
if show_original:
plt.subplot(1, 2, 1)
if not show_axis:
plt.axis('off')
plt.imshow(self.image,cmap='gray')
x,y=2,2
else:
x,y=1,1
#Plot the heatmap
plt.subplot(1,x,y)
if not show_axis:
plt.axis('off')
plt.imshow(self.image,cmap='gray')
plt.imshow(self.heat_map/255, alpha=transparency, cmap=color_map)
if show_colorbar:
plt.colorbar()
plt.tight_layout(w_pad=width_pad)
plt.show()
###Save the figure
def save(self,filename,format='png',save_path=os.getcwd(),
transparency=0.7,color_map='bwr',width_pad = -10,
show_axis=False, show_original=False, show_colorbar=False, **kwargs):
if show_original:
plt.subplot(1, 2, 1)
if not show_axis:
plt.axis('off')
plt.imshow(self.image,cmap='gray')
x,y=2,2
else:
x,y=1,1
#Plot the heatmap
plt.subplot(1,x,y)
if not show_axis:
plt.axis('off')
plt.imshow(self.image,cmap='gray')
plt.imshow(self.heat_map/255, alpha=transparency, cmap=color_map, caxis = [min(nonzeros(self.image)) max(nonzeros(self.image))])
if show_colorbar:
plt.colorbar()
plt.tight_layout(w_pad=width_pad)
plt.savefig(os.path.join(save_path,filename+'.'+format),
format=format,
bbox_inches='tight',
pad_inches = 0, **kwargs)
print('{}.{} has been successfully saved to {}'.format(filename,format,save_path))

View File

@ -5,7 +5,7 @@ from sfransen.Saliency.base import SaliencyMap
class IntegratedGradients(SaliencyMap):
def get_mask(self, image, baseline=None, num_steps=4):
def get_mask(self, image, baseline=None, num_steps=3):
"""Computes Integrated Gradients for a predicted label.
Args:
@ -38,7 +38,7 @@ class IntegratedGradients(SaliencyMap):
grads = []
for i, img in enumerate(interpolated_image):
print(f"interpolation step:",i," out of {num_steps}")
# print(f"interpolation step:",i,f" out of {num_steps}")
img = tf.expand_dims(img, axis=0)
grad = self.get_gradients(img)
grads.append(grad[0])