added 10. in scripts which calculates froc with method Chris and optuna
This commit is contained in:
parent
cd86205896
commit
dac43d7429
|
@ -148,4 +148,6 @@ cython_debug/
|
|||
*.out
|
||||
sqliteDB/
|
||||
*.db
|
||||
/train_output/
|
||||
/train_output/
|
||||
/umcglib/
|
||||
/k2s_umcg/
|
|
@ -0,0 +1,318 @@
|
|||
from pickle import FALSE
|
||||
from umcglib.froc import calculate_froc, plot_multiple_froc, partial_auc
|
||||
from umcglib.binarize import dynamic_threshold
|
||||
import optuna
|
||||
import sqlite3
|
||||
from sfransen.utils_quintin import *
|
||||
from os import path
|
||||
from sfransen.DWI_exp.preprocessing_function import preprocess
|
||||
import SimpleITK as sitk
|
||||
import numpy as np
|
||||
from sfransen.DWI_exp.callbacks import dice_coef
|
||||
from sfransen.DWI_exp.losses import weighted_binary_cross_entropy
|
||||
from tensorflow.keras.models import load_model
|
||||
from tqdm import tqdm
|
||||
from optuna.samplers import TPESampler
|
||||
import argparse
|
||||
import shutil
|
||||
import os
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Calculate the froc metrics and store in froc_metrics.yml')
|
||||
parser.add_argument('-experiment',
|
||||
help='Title of experiment')
|
||||
parser.add_argument('-series', '-s',
|
||||
metavar='[series_name]', required=True, nargs='+',
|
||||
help='List of series to include')
|
||||
parser.add_argument('-fold',
|
||||
default='',
|
||||
help='List of series to include')
|
||||
args = parser.parse_args()
|
||||
|
||||
def does_table_exist(tablename: str, db_path: str):
|
||||
|
||||
conn = sqlite3.connect(db_path)
|
||||
c = conn.cursor()
|
||||
|
||||
#get the count of tables with the name
|
||||
c.execute(f''' SELECT count(name) FROM sqlite_master WHERE type='table' AND name='{tablename}' ''')
|
||||
|
||||
does_exist = False
|
||||
|
||||
#if the count is 1, then table exists
|
||||
if c.fetchone()[0] == 1:
|
||||
print(f"Table '{tablename}' exists.")
|
||||
does_exist = True
|
||||
else:
|
||||
print(f"Table '{tablename}' does not exists.")
|
||||
|
||||
#commit the changes to db
|
||||
conn.commit()
|
||||
#close the connection
|
||||
conn.close()
|
||||
return does_exist
|
||||
|
||||
def load_or_create_study(
|
||||
is_new_study: bool,
|
||||
study_dir: str,
|
||||
):
|
||||
# Create an optuna if it does not exist.
|
||||
storage = f"sqlite:///{study_dir}/{DB_FNAME}"
|
||||
if is_new_study:
|
||||
print(f"Creating a NEW study. With name: {storage}")
|
||||
study = optuna.create_study(storage=storage,
|
||||
study_name=study_dir,
|
||||
direction='maximize',
|
||||
sampler=TPESampler(n_startup_trials=N_STARTUP_TRIALS))
|
||||
else:
|
||||
print(f"LOADING study {storage} from database file.")
|
||||
study = optuna.load_study(storage=storage,
|
||||
study_name=study_dir)
|
||||
|
||||
return study
|
||||
|
||||
def p_auc_froc_obj(trial, y_true_val, y_pred_val):
|
||||
|
||||
dyn_thresh = trial.suggest_float('dyn_thresh', 0.0, 1.0)
|
||||
min_conf = trial.suggest_float('min_conf', 0.0, 1.0)
|
||||
|
||||
stats = calculate_froc(y_true=y_true_val,
|
||||
y_pred=y_pred_val,
|
||||
preprocess_func=dynamic_threshold,
|
||||
dynamic_threshold_factor=dyn_thresh,
|
||||
minimum_confidence=min_conf)
|
||||
|
||||
sens, fpp = stats['sensitivity'], stats['fp_per_patient']
|
||||
p_auc_froc = partial_auc(sens, fpp, low=0.1, high=2.5)
|
||||
|
||||
print(f"dyn_threshold: {dyn_thresh}, min_conf{min_conf}")
|
||||
print(f"Trial {trial.number} pAUC FROC: {p_auc_froc}")
|
||||
|
||||
return p_auc_froc
|
||||
|
||||
def convert_np_to_list(flat_numpy_arr):
|
||||
ans = []
|
||||
for elem in flat_numpy_arr:
|
||||
ans.append(float(elem))
|
||||
return ans
|
||||
|
||||
# >>>>>>>>> main <<<<<<<<<<<<<
|
||||
# DB_FNAME = "calc_exp_t2_b1400_adc.db"
|
||||
num_trials = 50
|
||||
N_STARTUP_TRIALS = 10
|
||||
|
||||
SERIES = args.series
|
||||
series_ = '_'.join(SERIES)
|
||||
EXPERIMENT = args.experiment
|
||||
|
||||
DB_FNAME = f'{EXPERIMENT}_{series_}_{args.fold}.db'
|
||||
MODEL_PATH = f'./../train_output/{EXPERIMENT}_{series_}/models/{EXPERIMENT}_{series_}.h5'
|
||||
YAML_DIR = f'./../train_output/{EXPERIMENT}_{series_}'
|
||||
DATA_DIR = "./../data/Nijmegen paths/"
|
||||
TARGET_SPACING = (0.5, 0.5, 3)
|
||||
INPUT_SHAPE = (192, 192, 24, len(SERIES))
|
||||
IMAGE_SHAPE = INPUT_SHAPE[:3]
|
||||
|
||||
DATA_SPLIT_INDEX = read_yaml_to_dict(f'./../data/Nijmegen paths/train_val_test_idxs.yml')
|
||||
TEST_INDEX = DATA_SPLIT_INDEX['val_set0']
|
||||
print("test test_index",TEST_INDEX[:5])
|
||||
|
||||
############ load data en preprocess / old method
|
||||
# print(">>>>> read images <<<<<<<<<<")
|
||||
# image_paths = {}
|
||||
|
||||
# for s in SERIES:
|
||||
# with open(path.join(DATA_DIR, f"{s}.txt"), 'r') as f:
|
||||
# image_paths[s] = [l.strip() for l in f.readlines()]
|
||||
# with open(path.join(DATA_DIR, f"seg.txt"), 'r') as f:
|
||||
# seg_paths = [l.strip() for l in f.readlines()]
|
||||
# num_images = len(seg_paths)
|
||||
|
||||
# images = []
|
||||
# images_list = []
|
||||
# segmentations = []
|
||||
|
||||
# # Read and preprocess each of the paths for each series, and the segmentations.
|
||||
# for img_idx in tqdm(range(len(TEST_INDEX))): #[:40]): #for less images
|
||||
# # print('images number',[TEST_INDEX[img_idx]])
|
||||
# img_s = {f'{s}': sitk.ReadImage(image_paths[s][TEST_INDEX[img_idx]], sitk.sitkFloat32) for s in SERIES}
|
||||
# seg_s = sitk.ReadImage(seg_paths[TEST_INDEX[img_idx]], sitk.sitkFloat32)
|
||||
# img_n, seg_n = preprocess(img_s, seg_s,
|
||||
# shape=IMAGE_SHAPE, spacing=TARGET_SPACING)
|
||||
# for seq in img_n:
|
||||
# images.append(img_n[f'{seq}'])
|
||||
# images_list.append(images)
|
||||
# images = []
|
||||
# segmentations.append(seg_n)
|
||||
|
||||
# images_list = np.transpose(images_list, (0, 2, 3, 4, 1))
|
||||
# print("shape of segmentations is",np.shape(segmentations))
|
||||
# print('>>>>> size image_list nmr 2:', np.shape(images_list), '. equal to: (5, 192, 192, 24, 3)?')
|
||||
|
||||
# ########### load module ##################
|
||||
# print(' >>>>>>> LOAD MODEL <<<<<<<<<')
|
||||
|
||||
# dependencies = {
|
||||
# 'dice_coef': dice_coef,
|
||||
# 'weighted_cross_entropy_fn':weighted_binary_cross_entropy
|
||||
# }
|
||||
# reconstructed_model = load_model(MODEL_PATH, custom_objects=dependencies)
|
||||
# # reconstructed_model.summary(line_length=120)
|
||||
|
||||
# # make predictions on all TEST_INDEX
|
||||
# print(' >>>>>>> START prediction <<<<<<<<<')
|
||||
# predictions_blur = reconstructed_model.predict(images_list, batch_size=1)
|
||||
|
||||
# ############# preprocess #################
|
||||
# # preprocess predictions by removing the blur and making individual blobs
|
||||
# print('>>>>>>>> START preprocess')
|
||||
|
||||
# # def move_dims(arr):
|
||||
# # # UMCG numpy dimensions convention: dims = (batch, width, heigth, depth)
|
||||
# # # Joeran numpy dimensions convention: dims = (batch, depth, heigth, width)
|
||||
# # arr = np.moveaxis(arr, 3, 1)
|
||||
# # arr = np.moveaxis(arr, 3, 2)
|
||||
# # return arr
|
||||
|
||||
# # # Joeran has his numpy arrays ordered differently.
|
||||
# # predictions_blur = move_dims(np.squeeze(predictions_blur))
|
||||
# # segmentations = move_dims(np.squeeze(segmentations))
|
||||
|
||||
# y_pred_val = np.squeeze(predictions_blur)
|
||||
# y_true_val = segmentations
|
||||
study_dir = f"./../sqliteDB/optuna_dbs"
|
||||
|
||||
check_for_file = path.isfile(f"{study_dir}/{DB_FNAME}")
|
||||
if check_for_file == False:
|
||||
shutil.copyfile(f"{study_dir}/dyn_thres_min_conf_opt_OG.db", f"{study_dir}/{DB_FNAME}")
|
||||
|
||||
table_exists = does_table_exist('trials', f"{study_dir}/{DB_FNAME}")
|
||||
study = load_or_create_study(is_new_study=not table_exists, study_dir=study_dir)
|
||||
|
||||
# # dyn_thresh = study.best_trial.params['dyn_thresh']
|
||||
# # min_conf = study.best_trial.params['min_conf']
|
||||
# dyn_thresh = 0.4
|
||||
# min_conf = 0.01
|
||||
|
||||
# # print("step 1:",np.shape(y_pred_val))
|
||||
# stats = calculate_froc(y_true=y_true_val,
|
||||
# y_pred=y_pred_val,
|
||||
# preprocess_func=dynamic_threshold,
|
||||
# dynamic_threshold_factor=dyn_thresh,
|
||||
# minimum_confidence=min_conf)
|
||||
|
||||
# sens, fpp = stats['sensitivity'], stats['fp_per_patient']
|
||||
# p_auc = partial_auc(sens, fpp, low=0.1, high=2.5)
|
||||
|
||||
# print(f"the p_auc with old setting is: {p_auc}" )
|
||||
|
||||
# # Try to find the best value for the dynamic threshold and min_confidence
|
||||
# opt_func = lambda trail: p_auc_froc_obj(trail, y_true_val, y_pred_val)
|
||||
# study.optimize(opt_func, n_trials=num_trials)
|
||||
|
||||
dyn_thresh = study.best_trial.params['dyn_thresh']
|
||||
min_conf = study.best_trial.params['min_conf']
|
||||
print(f"done. best dyn_thresh: {dyn_thresh} . Best min_conf: {min_conf}")
|
||||
|
||||
########## dump dict to yaml of best froc curve #############
|
||||
|
||||
######## gooi dit in functie ###############
|
||||
DATA_SPLIT_INDEX = read_yaml_to_dict(f'./../data/Nijmegen paths/train_val_test_idxs.yml')
|
||||
TEST_INDEX = DATA_SPLIT_INDEX['test_set0']
|
||||
print("test test_index",TEST_INDEX[:5])
|
||||
|
||||
############ load data en preprocess / old method
|
||||
print(">>>>> read images <<<<<<<<<<")
|
||||
image_paths = {}
|
||||
|
||||
for s in SERIES:
|
||||
with open(path.join(DATA_DIR, f"{s}.txt"), 'r') as f:
|
||||
image_paths[s] = [l.strip() for l in f.readlines()]
|
||||
with open(path.join(DATA_DIR, f"seg.txt"), 'r') as f:
|
||||
seg_paths = [l.strip() for l in f.readlines()]
|
||||
num_images = len(seg_paths)
|
||||
|
||||
images = []
|
||||
images_list = []
|
||||
segmentations = []
|
||||
|
||||
# Read and preprocess each of the paths for each series, and the segmentations.
|
||||
for img_idx in tqdm(range(len(TEST_INDEX))): #[:40]): #for less images
|
||||
# print('images number',[TEST_INDEX[img_idx]])
|
||||
img_s = {f'{s}': sitk.ReadImage(image_paths[s][TEST_INDEX[img_idx]], sitk.sitkFloat32) for s in SERIES}
|
||||
seg_s = sitk.ReadImage(seg_paths[TEST_INDEX[img_idx]], sitk.sitkFloat32)
|
||||
img_n, seg_n = preprocess(img_s, seg_s,
|
||||
shape=IMAGE_SHAPE, spacing=TARGET_SPACING)
|
||||
for seq in img_n:
|
||||
images.append(img_n[f'{seq}'])
|
||||
images_list.append(images)
|
||||
images = []
|
||||
segmentations.append(seg_n)
|
||||
|
||||
images_list = np.transpose(images_list, (0, 2, 3, 4, 1))
|
||||
print("shape of segmentations is",np.shape(segmentations))
|
||||
print('>>>>> size image_list nmr 2:', np.shape(images_list), '. equal to: (5, 192, 192, 24, 3)?')
|
||||
|
||||
########### load module ##################
|
||||
print(' >>>>>>> LOAD MODEL <<<<<<<<<')
|
||||
|
||||
dependencies = {
|
||||
'dice_coef': dice_coef,
|
||||
'weighted_cross_entropy_fn':weighted_binary_cross_entropy
|
||||
}
|
||||
reconstructed_model = load_model(MODEL_PATH, custom_objects=dependencies)
|
||||
# reconstructed_model.summary(line_length=120)
|
||||
|
||||
# make predictions on all TEST_INDEX
|
||||
print(' >>>>>>> START prediction <<<<<<<<<')
|
||||
predictions_blur = reconstructed_model.predict(images_list, batch_size=1)
|
||||
|
||||
############# preprocess #################
|
||||
# preprocess predictions by removing the blur and making individual blobs
|
||||
print('>>>>>>>> START preprocess')
|
||||
|
||||
# def move_dims(arr):
|
||||
# # UMCG numpy dimensions convention: dims = (batch, width, heigth, depth)
|
||||
# # Joeran numpy dimensions convention: dims = (batch, depth, heigth, width)
|
||||
# arr = np.moveaxis(arr, 3, 1)
|
||||
# arr = np.moveaxis(arr, 3, 2)
|
||||
# return arr
|
||||
|
||||
# # Joeran has his numpy arrays ordered differently.
|
||||
# predictions_blur = move_dims(np.squeeze(predictions_blur))
|
||||
# segmentations = move_dims(np.squeeze(segmentations))
|
||||
|
||||
y_pred_val = np.squeeze(predictions_blur)
|
||||
y_true_val = segmentations
|
||||
########### einde functie ############
|
||||
|
||||
stats = calculate_froc(y_true=y_true_val,
|
||||
y_pred=y_pred_val,
|
||||
preprocess_func=dynamic_threshold,
|
||||
dynamic_threshold_factor=dyn_thresh,
|
||||
minimum_confidence=min_conf)
|
||||
|
||||
|
||||
subject_idxs = list(range(len(y_true_val)))
|
||||
metrics = {
|
||||
"num_patients": int(stats['num_patients']),
|
||||
"auroc": int(stats['patient_auc']),
|
||||
'tpr': convert_np_to_list(stats['roc_tpr']),
|
||||
'fpr': convert_np_to_list(stats['roc_fpr']),
|
||||
"roc_true": convert_np_to_list(stats['roc_patient_level_label'][s] for s in subject_idxs),
|
||||
"roc_pred": convert_np_to_list(stats['roc_patient_level_conf'][s] for s in subject_idxs),
|
||||
"num_lesions": int(stats['num_lesions']),
|
||||
"thresholds": convert_np_to_list(stats['thresholds']),
|
||||
"sensitivity": convert_np_to_list(stats['sensitivity']),
|
||||
"FP_per_case": convert_np_to_list(stats['fp_per_patient']),
|
||||
"precision": convert_np_to_list(stats['precision']),
|
||||
"recall": convert_np_to_list(stats['recall']),
|
||||
"AP": int(stats['average_precision']),
|
||||
}
|
||||
dump_dict_to_yaml(metrics, YAML_DIR, "froc_metrics_optuna_test", verbose=True)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -7,7 +7,8 @@ import multiprocessing
|
|||
from functools import partial
|
||||
import os
|
||||
from os import path
|
||||
|
||||
from tqdm import tqdm
|
||||
import argparse
|
||||
|
||||
from sfransen.utils_quintin import *
|
||||
from sfransen.DWI_exp.helpers import *
|
||||
|
|
|
@ -3,7 +3,7 @@ from sfransen.utils_quintin import *
|
|||
import matplotlib.pyplot as plt
|
||||
import argparse
|
||||
import matplotlib.ticker as tkr
|
||||
from sfransen.FROC.p_auc import partial_auc
|
||||
from umcglib.froc.p_auc import partial_auc
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Visualise froc results')
|
||||
|
@ -15,6 +15,9 @@ parser.add_argument('--experiment', '-s',
|
|||
metavar='[series_name]', required=True, nargs='+',
|
||||
help='List of series to include, must correspond with' +
|
||||
"path files in ./data/")
|
||||
parser.add_argument('-yaml_metric',
|
||||
help='List of series to include, must correspond with' +
|
||||
"path files in ./data/")
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.comparison:
|
||||
|
@ -24,6 +27,7 @@ else:
|
|||
colors = ['r','b','g','k','y','c']
|
||||
plot_type = ['-','-','-','-','-','-']
|
||||
|
||||
yaml_metric = args.yaml_metric
|
||||
experiments = args.experiment
|
||||
print(experiments)
|
||||
experiment_path = []
|
||||
|
@ -34,11 +38,11 @@ paufroc = []
|
|||
fig = plt.figure(1)
|
||||
ax = fig.add_subplot(111)
|
||||
for idx in range(len(args.experiment)):
|
||||
experiment_path = f'./../train_output/{experiments[idx]}/froc_metrics_focal_10.yml'
|
||||
experiment_path = f'./../train_output/{experiments[idx]}/froc_metrics_{yaml_metric}.yml'
|
||||
experiment_metrics = read_yaml_to_dict(experiment_path)
|
||||
|
||||
pfroc = partial_auc(experiment_metrics["sensitivity"],experiment_metrics["FP_per_case"])
|
||||
paufroc.append(round(pfroc,2)
|
||||
pfroc = partial_auc(experiment_metrics["sensitivity"],experiment_metrics["FP_per_case"],low=0.1, high=2.5)
|
||||
paufroc.append(round(pfroc,2))
|
||||
|
||||
plt.plot(experiment_metrics["FP_per_case"], experiment_metrics["sensitivity"],color=colors[idx],linestyle=plot_type[idx])
|
||||
ax.set(xscale="log")
|
||||
|
@ -50,7 +54,7 @@ for idx in range(len(args.experiment)):
|
|||
ax.axes.xaxis.set_major_locator(tkr.FixedLocator([0,0.1,1,3]))
|
||||
|
||||
for idx in range(len(args.experiment)):
|
||||
experiment_path = f'./../train_output/{experiments[idx]}/froc_metrics_focal_10.yml'
|
||||
experiment_path = f'./../train_output/{experiments[idx]}/froc_metrics_{yaml_metric}.yml'
|
||||
experiment_metrics = read_yaml_to_dict(experiment_path)
|
||||
auroc.append(round(experiment_metrics['auroc'],3))
|
||||
|
||||
|
@ -86,4 +90,4 @@ plt.legend(experiments_auroc,loc='lower right')
|
|||
plt.xlabel('False positive rate')
|
||||
plt.ylabel('True positive rate')
|
||||
plt.grid()
|
||||
plt.savefig(f"./../train_output/ROC_{args.saveas}.png", dpi=300)
|
||||
plt.savefig(f"./../train_output/ROC_{args.saveas}.png", dpi=300)
|
|
@ -1,12 +1,17 @@
|
|||
import numpy as np
|
||||
import SimpleITK as sitk
|
||||
import matplotlib.pyplot as plt
|
||||
######## load images #############
|
||||
path_b50 = '/data/pca-rad/datasets/radboud_new/pat0634/2016/diffusie_cro/b-50/nifti_image.nii.gz'
|
||||
path_b400 = '/data/pca-rad/datasets/radboud_new/pat0634/2016/diffusie_cro/b-400/nifti_image.nii.gz'
|
||||
path_b800 = '/data/pca-rad/datasets/radboud_new/pat0634/2016/diffusie_cro/b-800/nifti_image.nii.gz'
|
||||
path_b1400 = '/data/pca-rad/datasets/radboud_new/pat0634/2016/diffusie_cro/b-1400/nifti_image.nii.gz'
|
||||
path_adc = '/data/pca-rad/datasets/radboud_new/pat0634/2016/dADC/nifti_image.nii.gz'
|
||||
# ######## load images #############
|
||||
# path_b50 = '/data/pca-rad/datasets/radboud_new/pat0634/2016/diffusie_cro/b-50/nifti_image.nii.gz'
|
||||
# path_b400 = '/data/pca-rad/datasets/radboud_new/pat0634/2016/diffusie_cro/b-400/nifti_image.nii.gz'
|
||||
# path_b800 = '/data/pca-rad/datasets/radboud_new/pat0634/2016/diffusie_cro/b-800/nifti_image.nii.gz'
|
||||
# path_b1400 = '/data/pca-rad/datasets/radboud_new/pat0634/2016/diffusie_cro/b-1400/nifti_image.nii.gz'
|
||||
# path_adc = '/data/pca-rad/datasets/radboud_new/pat0634/2016/dADC/nifti_image.nii.gz'
|
||||
|
||||
path_adc = '/data/pca-rad/datasets/anonymized_mri/only_nii_directory/110-M-110/2015NB/dADC_0-50-500-1000/702_.nii.gz'
|
||||
path_b0 = '/data/pca-rad/datasets/anonymized_mri/only_nii_directory/110-M-110/2015NB/Diffusie/b-0/701_.nii.gz'
|
||||
path_b800 = '/data/pca-rad/datasets/anonymized_mri/only_nii_directory/110-M-110/2015NB/Diffusie/b-800/701_.nii.gz'
|
||||
|
||||
|
||||
# path_b50 = 'X:/sfransen/train_output/adc_exp/b50_true.nii.gz'
|
||||
# path_b400 = 'X:/sfransen/train_output/adc_exp/b400_true.nii.gz'
|
||||
|
@ -20,14 +25,14 @@ path_adc = '/data/pca-rad/datasets/radboud_new/pat0634/2016/dADC/nifti_image.nii
|
|||
# path_b1400 = '/data/pca-rad/sfransen/train_output/adc_exp/b1400_true.nii.gz'
|
||||
# path_adc = '/data/pca-rad/sfransen/train_output/adc_exp/adc_true.nii.gz'
|
||||
|
||||
b50_img = sitk.ReadImage(path_b50, sitk.sitkFloat32)
|
||||
b50 = sitk.GetArrayFromImage(b50_img)
|
||||
b400_img = sitk.ReadImage(path_b400, sitk.sitkFloat32)
|
||||
b400 = sitk.GetArrayFromImage(b400_img)
|
||||
b0_img = sitk.ReadImage(path_b0, sitk.sitkFloat32)
|
||||
b0 = sitk.GetArrayFromImage(b0_img)
|
||||
# b400_img = sitk.ReadImage(path_b400, sitk.sitkFloat32)
|
||||
# b400 = sitk.GetArrayFromImage(b400_img)
|
||||
b800_img = sitk.ReadImage(path_b800, sitk.sitkFloat32)
|
||||
b800 = sitk.GetArrayFromImage(b800_img)
|
||||
b1400_img = sitk.ReadImage(path_b1400, sitk.sitkFloat32)
|
||||
b1400_original = sitk.GetArrayFromImage(b1400_img)
|
||||
# b1400_img = sitk.ReadImage(path_b1400, sitk.sitkFloat32)
|
||||
# b1400_original = sitk.GetArrayFromImage(b1400_img)
|
||||
adc_img = sitk.ReadImage(path_adc, sitk.sitkFloat32)
|
||||
adc_original = sitk.GetArrayFromImage(adc_img)
|
||||
|
||||
|
@ -39,21 +44,21 @@ def show_img(greyscale_img):
|
|||
fig.savefig(path, dpi=300, bbox_inches='tight')
|
||||
|
||||
def calc_adc(b50, b400, b800):
|
||||
"Calculates the adc based on b50, b400 and b800 DWI images/arrays."
|
||||
mean_dwi = (50 + 400 + 800) / 3
|
||||
mean_si = np.divide(np.add(np.add(np.log(b50), np.log(b400)), np.log(b800)), 3)
|
||||
|
||||
denominator = np.multiply((50 - mean_dwi), np.subtract(np.log(b50), mean_si)) + np.multiply((400 - mean_dwi), np.subtract(np.log(b400), mean_si)) + np.multiply((800 - mean_dwi), np.subtract(np.log(b800), mean_si))
|
||||
numerator = np.power((50 - mean_dwi), 2) + np.power((400 - mean_dwi), 2) + np.power((800 - mean_dwi), 2)
|
||||
adc_with_zeros = np.divide(denominator, numerator) * -1000000
|
||||
adc = np.clip(adc_with_zeros,0,np.amax(adc_with_zeros))
|
||||
return adc
|
||||
|
||||
def calc_adc_1(b50,b800):
|
||||
mean_dwi = (50 + 800) / 2
|
||||
mean_si = np.divide(np.add(np.log(b50), np.log(b800)), 2)
|
||||
def calc_adc_1(b0,b800):
|
||||
mean_dwi = (0 + 800) / 2
|
||||
mean_si = np.divide(np.add(np.log(b0), np.log(b800)), 2)
|
||||
|
||||
denominator = np.multiply((50 - mean_dwi), np.subtract(np.log(b50), mean_si)) + np.multiply((800 - mean_dwi), np.subtract(np.log(b800), mean_si))
|
||||
numerator = np.power((50 - mean_dwi), 2) + np.power((800 - mean_dwi), 2)
|
||||
denominator = np.multiply((0 - mean_dwi), np.subtract(np.log(b0), mean_si)) + np.multiply((800 - mean_dwi), np.subtract(np.log(b800), mean_si))
|
||||
numerator = np.power((0 - mean_dwi), 2) + np.power((800 - mean_dwi), 2)
|
||||
adc_with_zeros = np.divide(denominator, numerator) * -1000000
|
||||
adc = np.clip(adc_with_zeros,0,np.amax(adc_with_zeros))
|
||||
return adc
|
||||
|
@ -78,92 +83,115 @@ def calc_adc_3(b400,b800):
|
|||
adc = np.clip(adc_with_zeros,0,np.amax(adc_with_zeros))
|
||||
return adc
|
||||
|
||||
def calc_high_b(b_value_high,b_value,b_image,ADC_map):
|
||||
high_b = np.multiply(b_image, np.exp(np.multiply(np.subtract(b_value,b_value_high), (np.divide(ADC_map,1000000)))))
|
||||
def calc_high_b(b_value_high,b_value,b_image,adc):
|
||||
"""
|
||||
Calculates a high b-value image.
|
||||
b_value_high = the requered b-value integer
|
||||
b_value = the b_value integer used as reference image
|
||||
b_value = the corresponding array
|
||||
adc = the corresponding adc array
|
||||
""""
|
||||
high_b = np.multiply(b_image, np.exp(np.multiply(np.subtract(b_value,b_value_high), (np.divide(adc,1000000)))))
|
||||
return high_b
|
||||
|
||||
adc_50_400_800 = calc_adc(b50,b400,b800)
|
||||
adc_50_800 = calc_adc_1(b50,b800)
|
||||
adc_50_400 = calc_adc_2(b50,b400)
|
||||
adc_400_800 = calc_adc_3(b400,b800)
|
||||
adc_0_800 = calc_adc_1(b0,b800)
|
||||
high_b_1400_0 = calc_high_b(1400,0,b0,adc_0_800)
|
||||
|
||||
high_b_1400_50 = calc_high_b(1400,50,b50,adc_50_800)
|
||||
high_b_1400_all = calc_high_b(1400,50,b50,adc_50_400_800)
|
||||
adc_0_800 = sitk.GetImageFromArray(adc_0_800)
|
||||
adc_0_800.CopyInformation(b0_img)
|
||||
sitk.WriteImage(adc_0_800, f"../train_output/test.nii.gz")
|
||||
|
||||
high_b_1400_400 = calc_high_b(1400,400,b400,adc_50_800)
|
||||
high_b_1400_800 = calc_high_b(1400,800,b800,adc_50_800)
|
||||
adc_50_800 = sitk.GetImageFromArray(adc_50_800)
|
||||
adc_50_800.CopyInformation(adc_img)
|
||||
sitk.WriteImage(adc_50_800, f"../train_output/adc_exp/adc_copied_with_adc.nii.gz")
|
||||
|
||||
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
|
||||
fig.suptitle('ADC calculated with b50 b400 b800')
|
||||
ax1.imshow(adc_50_400_800[:][:][13],cmap='gray')
|
||||
ax1.set_title('calculated b50 b400 b800')
|
||||
ax2.imshow(adc_original[:][:][13],cmap='gray')
|
||||
ax2.set_title('original')
|
||||
error_map = np.subtract(adc_original[:][:][13],adc_50_800[:][:][13])
|
||||
ax3.imshow(error_map,cmap='gray')
|
||||
ax3.set_title('error map')
|
||||
path = f"ADC_634.png"
|
||||
fig.savefig(path, dpi=300, bbox_inches='tight')
|
||||
|
||||
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
|
||||
fig.suptitle('ADC calculated with b50 b800')
|
||||
ax1.imshow(adc_50_800[:][:][13],cmap='gray')
|
||||
ax1.set_title('calculated b50 b800')
|
||||
ax2.imshow(adc_original[:][:][13],cmap='gray')
|
||||
ax2.set_title('original')
|
||||
error_map = np.subtract(adc_original[:][:][13],adc_50_800[:][:][13])
|
||||
ax3.imshow(error_map,cmap='gray')
|
||||
ax3.set_title('error map')
|
||||
path = f"ADC_634_1.png"
|
||||
fig.savefig(path, dpi=300, bbox_inches='tight')
|
||||
#
|
||||
|
||||
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
|
||||
fig.suptitle('Difference between ADC calculation')
|
||||
ax1.imshow(adc_50_400_800[:][:][13],cmap='gray')
|
||||
ax1.set_title('calculated b50 b400 b800')
|
||||
ax2.imshow(adc_50_800[:][:][13],cmap='gray')
|
||||
ax2.set_title('calculated b50 b800')
|
||||
error_map = np.subtract(adc_50_800[:][:][13],adc_50_400_800[:][:][13])
|
||||
ax3.imshow(error_map,cmap='gray')
|
||||
ax3.set_title('error map')
|
||||
path = f"ADC_634_different_calculation_1.png"
|
||||
fig.savefig(path, dpi=300, bbox_inches='tight')
|
||||
|
||||
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
|
||||
fig.suptitle('Difference between ADC calculation')
|
||||
ax1.imshow(adc_50_800[:][:][13],cmap='gray')
|
||||
ax1.set_title('calculated b50 b800')
|
||||
ax2.imshow(adc_50_400[:][:][13],cmap='gray')
|
||||
ax2.set_title('calculated b50 b400')
|
||||
error_map = np.subtract(adc_50_800[:][:][13],adc_50_400[:][:][13])
|
||||
ax3.imshow(error_map,cmap='gray')
|
||||
ax3.set_title('error map')
|
||||
path = f"ADC_634_different_calculation_2.png"
|
||||
fig.savefig(path, dpi=300, bbox_inches='tight')
|
||||
quit()
|
||||
# adc_50_400_800 = calc_adc(b50,b400,b800)
|
||||
# adc_50_800 = calc_adc_1(b50,b800)
|
||||
# adc_50_400 = calc_adc_2(b50,b400)
|
||||
# adc_400_800 = calc_adc_3(b400,b800)
|
||||
|
||||
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
|
||||
fig.suptitle('High B calculated with b50 reference and ADC from b50&b800')
|
||||
ax1.imshow(high_b_1400_50[:][:][13],cmap='gray')
|
||||
ax1.set_title('calculated')
|
||||
ax2.imshow(b1400_original[:][:][13],cmap='gray')
|
||||
ax2.set_title('original')
|
||||
error_map = np.subtract(b1400_original[:][:][13],high_b_1400_50[:][:][13])
|
||||
ax3.imshow(error_map,cmap='gray')
|
||||
ax3.set_title('error map')
|
||||
path = f"HighB_b50_b800_634_1.png"
|
||||
fig.savefig(path, dpi=300, bbox_inches='tight')
|
||||
# high_b_1400_50 = calc_high_b(1400,50,b50,adc_50_800)
|
||||
# high_b_1400_all = calc_high_b(1400,50,b50,adc_50_400_800)
|
||||
|
||||
fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
|
||||
fig.suptitle('High B calculated with b50 reference and ADC from b50&b400&b800')
|
||||
ax1.imshow(high_b_1400_50[:][:][13],cmap='gray')
|
||||
ax1.set_title('calculated')
|
||||
ax2.imshow(b1400_original[:][:][13],cmap='gray')
|
||||
ax2.set_title('original')
|
||||
error_map = np.subtract(b1400_original[:][:][13],high_b_1400_50[:][:][13])
|
||||
ax3.imshow(error_map,cmap='gray')
|
||||
ax3.set_title('error map')
|
||||
path = f"HighB_b50_b800_634_2.png"
|
||||
fig.savefig(path, dpi=300, bbox_inches='tight')
|
||||
# high_b_1400_400 = calc_high_b(1400,400,b400,adc_50_800)
|
||||
# high_b_1400_800 = calc_high_b(1400,800,b800,adc_50_800)
|
||||
|
||||
# fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
|
||||
# fig.suptitle('ADC calculated with b50 b400 b800')
|
||||
# ax1.imshow(adc_50_400_800[:][:][13],cmap='gray')
|
||||
# ax1.set_title('calculated b50 b400 b800')
|
||||
# ax2.imshow(adc_original[:][:][13],cmap='gray')
|
||||
# ax2.set_title('original')
|
||||
# error_map = np.subtract(adc_original[:][:][13],adc_50_800[:][:][13])
|
||||
# ax3.imshow(error_map,cmap='gray')
|
||||
# ax3.set_title('error map')
|
||||
# path = f"ADC_634.png"
|
||||
# fig.savefig(path, dpi=300, bbox_inches='tight')
|
||||
|
||||
# fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
|
||||
# fig.suptitle('ADC calculated with b50 b800')
|
||||
# ax1.imshow(adc_50_800[:][:][13],cmap='gray')
|
||||
# ax1.set_title('calculated b50 b800')
|
||||
# ax2.imshow(adc_original[:][:][13],cmap='gray')
|
||||
# ax2.set_title('original')
|
||||
# error_map = np.subtract(adc_original[:][:][13],adc_50_800[:][:][13])
|
||||
# ax3.imshow(error_map,cmap='gray')
|
||||
# ax3.set_title('error map')
|
||||
# path = f"ADC_634_1.png"
|
||||
# fig.savefig(path, dpi=300, bbox_inches='tight')
|
||||
|
||||
# fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
|
||||
# fig.suptitle('Difference between ADC calculation')
|
||||
# ax1.imshow(adc_50_400_800[:][:][13],cmap='gray')
|
||||
# ax1.set_title('calculated b50 b400 b800')
|
||||
# ax2.imshow(adc_50_800[:][:][13],cmap='gray')
|
||||
# ax2.set_title('calculated b50 b800')
|
||||
# error_map = np.subtract(adc_50_800[:][:][13],adc_50_400_800[:][:][13])
|
||||
# ax3.imshow(error_map,cmap='gray')
|
||||
# ax3.set_title('error map')
|
||||
# path = f"ADC_634_different_calculation_1.png"
|
||||
# fig.savefig(path, dpi=300, bbox_inches='tight')
|
||||
|
||||
# fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
|
||||
# fig.suptitle('Difference between ADC calculation')
|
||||
# ax1.imshow(adc_50_800[:][:][13],cmap='gray')
|
||||
# ax1.set_title('calculated b50 b800')
|
||||
# ax2.imshow(adc_50_400[:][:][13],cmap='gray')
|
||||
# ax2.set_title('calculated b50 b400')
|
||||
# error_map = np.subtract(adc_50_800[:][:][13],adc_50_400[:][:][13])
|
||||
# ax3.imshow(error_map,cmap='gray')
|
||||
# ax3.set_title('error map')
|
||||
# path = f"ADC_634_different_calculation_2.png"
|
||||
# fig.savefig(path, dpi=300, bbox_inches='tight')
|
||||
|
||||
# fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
|
||||
# fig.suptitle('High B calculated with b50 reference and ADC from b50&b800')
|
||||
# ax1.imshow(high_b_1400_50[:][:][13],cmap='gray')
|
||||
# ax1.set_title('calculated')
|
||||
# ax2.imshow(b1400_original[:][:][13],cmap='gray')
|
||||
# ax2.set_title('original')
|
||||
# error_map = np.subtract(b1400_original[:][:][13],high_b_1400_50[:][:][13])
|
||||
# ax3.imshow(error_map,cmap='gray')
|
||||
# ax3.set_title('error map')
|
||||
# path = f"HighB_b50_b800_634_1.png"
|
||||
# fig.savefig(path, dpi=300, bbox_inches='tight')
|
||||
|
||||
# fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
|
||||
# fig.suptitle('High B calculated with b50 reference and ADC from b50&b400&b800')
|
||||
# ax1.imshow(high_b_1400_50[:][:][13],cmap='gray')
|
||||
# ax1.set_title('calculated')
|
||||
# ax2.imshow(b1400_original[:][:][13],cmap='gray')
|
||||
# ax2.set_title('original')
|
||||
# error_map = np.subtract(b1400_original[:][:][13],high_b_1400_50[:][:][13])
|
||||
# ax3.imshow(error_map,cmap='gray')
|
||||
# ax3.set_title('error map')
|
||||
# path = f"HighB_b50_b800_634_2.png"
|
||||
# fig.savefig(path, dpi=300, bbox_inches='tight')
|
||||
|
||||
# adc_50_400_800 = sitk.GetImageFromArray(adc_50_400_800)
|
||||
# adc_50_400_800.CopyInformation(b50_img)
|
||||
|
|
Loading…
Reference in New Issue