2018-08-10 15:01:05 +02:00
# ==================================================================== #
2023-07-08 17:30:05 +02:00
# TITLE: #
2022-10-05 09:12:22 +02:00
# AMR: An R Package for Working with Antimicrobial Resistance Data #
2018-08-10 15:01:05 +02:00
# #
2023-07-08 17:30:05 +02:00
# SOURCE CODE: #
2020-07-08 14:48:06 +02:00
# https://github.com/msberends/AMR #
2018-08-10 15:01:05 +02:00
# #
2023-07-08 17:30:05 +02:00
# PLEASE CITE THIS SOFTWARE AS: #
2024-07-16 14:51:57 +02:00
# Berends MS, Luz CF, Friedrich AW, et al. (2022). #
# AMR: An R Package for Working with Antimicrobial Resistance Data. #
# Journal of Statistical Software, 104(3), 1-31. #
2023-05-27 10:39:22 +02:00
# https://doi.org/10.18637/jss.v104.i03 #
2022-10-05 09:12:22 +02:00
# #
2022-12-27 15:16:15 +01:00
# Developed at the University of Groningen and the University Medical #
# Center Groningen in The Netherlands, in collaboration with many #
# colleagues from around the world, see our website. #
2018-08-10 15:01:05 +02:00
# #
2019-01-02 23:24:07 +01:00
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
2020-01-05 17:22:09 +01:00
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
2020-10-08 11:16:03 +02:00
# #
# Visit our website for the full manual and a complete tutorial about #
2021-02-02 23:57:35 +01:00
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
2018-08-10 15:01:05 +02:00
# ==================================================================== #
2021-07-12 20:24:49 +02:00
#' Predict Antimicrobial Resistance
2018-08-10 15:01:05 +02:00
#'
2019-11-28 22:32:17 +01:00
#' Create a prediction model to predict antimicrobial resistance for the next years on statistical solid ground. Standard errors (SE) will be returned as columns `se_min` and `se_max`. See *Examples* for a real live example.
2021-07-12 22:12:28 +02:00
#' @param object model data to be plotted
2019-11-28 22:32:17 +01:00
#' @param col_ab column name of `x` containing antimicrobial interpretations (`"R"`, `"I"` and `"S"`)
2023-02-22 14:38:57 +01:00
#' @param col_date column name of the date, will be used to calculate years if this column doesn't consist of years already - the default is the first column of with a date class
2019-11-28 22:32:17 +01:00
#' @param year_min lowest year to use in the prediction model, dafaults to the lowest year in `col_date`
2023-02-22 14:38:57 +01:00
#' @param year_max highest year to use in the prediction model - the default is 10 years after today
2019-11-28 22:32:17 +01:00
#' @param year_every unit of sequence between lowest year found in the data and `year_max`
2018-08-10 15:01:05 +02:00
#' @param minimum minimal amount of available isolates per year to include. Years containing less observations will be estimated by the model.
2022-06-03 13:28:55 +02:00
#' @param model the statistical model of choice. This could be a generalised linear regression model with binomial distribution (i.e. using `glm(..., family = binomial)`, assuming that a period of zero resistance was followed by a period of increasing resistance leading slowly to more and more resistance. See *Details* for all valid options.
2022-08-28 10:31:50 +02:00
#' @param I_as_S a [logical] to indicate whether values `"I"` should be treated as `"S"` (will otherwise be treated as `"R"`). The default, `TRUE`, follows the redefinition by EUCAST about the interpretation of I (increased exposure) in 2019, see section *Interpretation of S, I and R* below.
2021-05-12 18:15:03 +02:00
#' @param preserve_measurements a [logical] to indicate whether predictions of years that are actually available in the data should be overwritten by the original data. The standard errors of those years will be `NA`.
#' @param info a [logical] to indicate whether textual analysis should be printed with the name and [summary()] of the statistical model.
2019-01-15 16:38:54 +01:00
#' @param main title of the plot
2021-05-12 18:15:03 +02:00
#' @param ribbon a [logical] to indicate whether a ribbon should be shown (default) or error bars
2020-12-22 00:51:17 +01:00
#' @param ... arguments passed on to functions
2023-01-21 23:47:20 +01:00
#' @inheritSection as.sir Interpretation of SIR
2019-05-13 16:35:48 +02:00
#' @inheritParams first_isolate
#' @inheritParams graphics::plot
2020-12-22 00:51:17 +01:00
#' @details Valid options for the statistical model (argument `model`) are:
2019-11-28 22:32:17 +01:00
#' - `"binomial"` or `"binom"` or `"logit"`: a generalised linear regression model with binomial distribution
#' - `"loglin"` or `"poisson"`: a generalised log-linear regression model with poisson distribution
#' - `"lin"` or `"linear"`: a linear regression model
2020-09-18 16:05:53 +02:00
#' @return A [data.frame] with extra class [`resistance_predict`] with columns:
2019-11-28 22:32:17 +01:00
#' - `year`
#' - `value`, the same as `estimated` when `preserve_measurements = FALSE`, and a combination of `observed` and `estimated` otherwise
#' - `se_min`, the lower bound of the standard error with a minimum of `0` (so the standard error will never go below 0%)
#' - `se_max` the upper bound of the standard error with a maximum of `1` (so the standard error will never go above 100%)
#' - `observations`, the total number of available observations in that year, i.e. \eqn{S + I + R}
#' - `observed`, the original observed resistant percentages
#' - `estimated`, the estimated resistant percentages, calculated by the model
2022-08-28 10:31:50 +02:00
#'
2021-01-18 16:57:56 +01:00
#' Furthermore, the model itself is available as an attribute: `attributes(x)$model`, see *Examples*.
2019-11-28 22:32:17 +01:00
#' @seealso The [proportion()] functions to calculate resistance
2022-08-28 10:31:50 +02:00
#'
2019-11-28 22:32:17 +01:00
#' Models: [lm()] [glm()]
2018-08-10 15:01:05 +02:00
#' @rdname resistance_predict
#' @export
#' @importFrom stats predict glm lm
#' @examples
2022-08-28 10:31:50 +02:00
#' x <- resistance_predict(example_isolates,
#' col_ab = "AMX",
#' year_min = 2010,
#' model = "binomial"
#' )
2019-01-15 12:45:24 +01:00
#' plot(x)
2021-05-24 09:00:11 +02:00
#' \donttest{
2020-05-16 21:40:50 +02:00
#' if (require("ggplot2")) {
2023-01-21 23:47:20 +01:00
#' ggplot_sir_predict(x)
2020-05-16 21:40:50 +02:00
#' }
2018-08-10 15:01:05 +02:00
#'
2020-05-16 13:05:47 +02:00
#' # using dplyr:
2020-05-16 21:40:50 +02:00
#' if (require("dplyr")) {
2020-05-16 13:05:47 +02:00
#' x <- example_isolates %>%
#' filter_first_isolate() %>%
#' filter(mo_genus(mo) == "Staphylococcus") %>%
#' resistance_predict("PEN", model = "binomial")
2022-08-27 20:49:37 +02:00
#' print(plot(x))
2019-02-11 10:27:10 +01:00
#'
2020-05-16 13:05:47 +02:00
#' # get the model from the object
#' mymodel <- attributes(x)$model
#' summary(mymodel)
#' }
2019-02-11 10:27:10 +01:00
#'
#' # create nice plots with ggplot2 yourself
2022-08-27 20:49:37 +02:00
#' if (require("dplyr") && require("ggplot2")) {
2019-08-27 16:45:42 +02:00
#' data <- example_isolates %>%
2018-12-22 22:39:34 +01:00
#' filter(mo == as.mo("E. coli")) %>%
2022-08-28 10:31:50 +02:00
#' resistance_predict(
#' col_ab = "AMX",
#' col_date = "date",
#' model = "binomial",
#' info = FALSE,
#' minimum = 15
#' )
2022-08-21 16:37:20 +02:00
#' head(data)
2021-07-12 20:24:49 +02:00
#' autoplot(data)
2018-08-10 15:01:05 +02:00
#' }
2021-05-24 09:00:11 +02:00
#' }
2019-05-13 16:35:48 +02:00
resistance_predict <- function ( x ,
2018-08-10 15:01:05 +02:00
col_ab ,
2019-01-15 12:45:24 +01:00
col_date = NULL ,
2018-08-10 15:01:05 +02:00
year_min = NULL ,
year_max = NULL ,
year_every = 1 ,
minimum = 30 ,
2019-08-07 15:37:39 +02:00
model = NULL ,
2019-05-13 16:35:48 +02:00
I_as_S = TRUE ,
2018-08-10 15:01:05 +02:00
preserve_measurements = TRUE ,
2020-02-21 21:13:38 +01:00
info = interactive ( ) ,
2019-05-13 16:35:48 +02:00
... ) {
2020-10-19 17:09:19 +02:00
meet_criteria ( x , allow_class = " data.frame" )
meet_criteria ( col_ab , allow_class = " character" , has_length = 1 , is_in = colnames ( x ) )
meet_criteria ( col_date , allow_class = " character" , has_length = 1 , is_in = colnames ( x ) , allow_NULL = TRUE )
2021-01-24 14:48:56 +01:00
meet_criteria ( year_min , allow_class = c ( " numeric" , " integer" ) , has_length = 1 , allow_NULL = TRUE , is_positive = TRUE , is_finite = TRUE )
meet_criteria ( year_max , allow_class = c ( " numeric" , " integer" ) , has_length = 1 , allow_NULL = TRUE , is_positive = TRUE , is_finite = TRUE )
meet_criteria ( year_every , allow_class = c ( " numeric" , " integer" ) , has_length = 1 , is_positive = TRUE , is_finite = TRUE )
2023-02-10 16:18:00 +01:00
meet_criteria ( minimum , allow_class = c ( " numeric" , " integer" ) , has_length = 1 , is_positive_or_zero = TRUE , is_finite = TRUE )
2020-10-19 17:09:19 +02:00
meet_criteria ( model , allow_class = c ( " character" , " function" ) , has_length = 1 , allow_NULL = TRUE )
meet_criteria ( I_as_S , allow_class = " logical" , has_length = 1 )
meet_criteria ( preserve_measurements , allow_class = " logical" , has_length = 1 )
meet_criteria ( info , allow_class = " logical" , has_length = 1 )
2022-08-28 10:31:50 +02:00
2020-12-22 00:51:17 +01:00
stop_if ( is.null ( model ) , ' choose a regression model with the `model` argument, e.g. resistance_predict(..., model = "binomial")' )
2022-08-28 10:31:50 +02:00
2022-08-27 20:49:37 +02:00
x.bak <- x
x <- as.data.frame ( x , stringsAsFactors = FALSE )
2022-08-28 10:31:50 +02:00
2019-01-15 12:45:24 +01:00
# -- date
if ( is.null ( col_date ) ) {
2019-05-23 16:58:59 +02:00
col_date <- search_type_in_df ( x = x , type = " date" )
2020-06-22 11:18:40 +02:00
stop_if ( is.null ( col_date ) , " `col_date` must be set" )
2019-01-15 12:45:24 +01:00
}
2022-08-28 10:31:50 +02:00
stop_ifnot (
col_date %in% colnames ( x ) ,
" column '" , col_date , " ' not found"
)
2018-08-10 15:01:05 +02:00
year <- function ( x ) {
2019-11-11 10:46:39 +01:00
# don't depend on lubridate or so, would be overkill for only this function
2019-10-11 17:21:02 +02:00
if ( all ( grepl ( " ^[0-9]{4}$" , x ) ) ) {
2020-06-17 21:35:10 +02:00
as.integer ( x )
2018-08-10 15:01:05 +02:00
} else {
2019-10-11 17:21:02 +02:00
as.integer ( format ( as.Date ( x ) , " %Y" ) )
2018-08-10 15:01:05 +02:00
}
}
2022-08-28 10:31:50 +02:00
2020-05-16 13:05:47 +02:00
df <- x
2023-01-21 23:47:20 +01:00
df [ , col_ab ] <- droplevels ( as.sir ( df [ , col_ab , drop = TRUE ] ) )
2019-08-04 10:48:41 +02:00
if ( I_as_S == TRUE ) {
2020-05-16 13:05:47 +02:00
# then I as S
2022-10-05 09:12:22 +02:00
df [ , col_ab ] <- gsub ( " I" , " S" , df [ , col_ab , drop = TRUE ] , fixed = TRUE )
2019-08-04 10:48:41 +02:00
} else {
# then I as R
2022-10-05 09:12:22 +02:00
df [ , col_ab ] <- gsub ( " I" , " R" , df [ , col_ab , drop = TRUE ] , fixed = TRUE )
2018-08-10 15:01:05 +02:00
}
2020-05-16 13:05:47 +02:00
df [ , col_ab ] <- ifelse ( is.na ( df [ , col_ab , drop = TRUE ] ) , 0 , df [ , col_ab , drop = TRUE ] )
2022-08-28 10:31:50 +02:00
2020-05-16 13:05:47 +02:00
# remove rows with NAs
df <- subset ( df , ! is.na ( df [ , col_ab , drop = TRUE ] ) )
df $ year <- year ( df [ , col_date , drop = TRUE ] )
2022-08-27 20:49:37 +02:00
df <- as.data.frame ( rbind ( table ( df [ , c ( " year" , col_ab ) , drop = FALSE ] ) ) ,
2022-08-28 10:31:50 +02:00
stringsAsFactors = FALSE
)
2020-05-16 13:05:47 +02:00
df $ year <- as.integer ( rownames ( df ) )
rownames ( df ) <- NULL
2022-08-28 10:31:50 +02:00
2020-05-16 13:05:47 +02:00
df <- subset ( df , sum ( df $ R + df $ S , na.rm = TRUE ) >= minimum )
2020-12-28 22:24:33 +01:00
# nolint start
2020-05-16 13:05:47 +02:00
df_matrix <- as.matrix ( df [ , c ( " R" , " S" ) , drop = FALSE ] )
2020-12-28 22:24:33 +01:00
# nolint end
2022-08-28 10:31:50 +02:00
2020-06-22 11:18:40 +02:00
stop_if ( NROW ( df ) == 0 , " there are no observations" )
2022-08-28 10:31:50 +02:00
2018-08-10 15:01:05 +02:00
year_lowest <- min ( df $ year )
if ( is.null ( year_min ) ) {
year_min <- year_lowest
} else {
year_min <- max ( year_min , year_lowest , na.rm = TRUE )
}
if ( is.null ( year_max ) ) {
2019-01-12 19:31:30 +01:00
year_max <- year ( Sys.Date ( ) ) + 10
2018-08-10 15:01:05 +02:00
}
2022-08-28 10:31:50 +02:00
2019-01-15 12:45:24 +01:00
years <- list ( year = seq ( from = year_min , to = year_max , by = year_every ) )
2022-08-28 10:31:50 +02:00
2019-10-11 17:21:02 +02:00
if ( model %in% c ( " binomial" , " binom" , " logit" ) ) {
2019-01-15 12:45:24 +01:00
model <- " binomial"
model_lm <- with ( df , glm ( df_matrix ~ year , family = binomial ) )
2022-11-14 15:20:39 +01:00
if ( isTRUE ( info ) ) {
2019-10-11 17:21:02 +02:00
cat ( " \nLogistic regression model (logit) with binomial distribution" )
cat ( " \n------------------------------------------------------------\n" )
2019-01-15 12:45:24 +01:00
print ( summary ( model_lm ) )
2018-08-10 15:01:05 +02:00
}
2022-08-28 10:31:50 +02:00
2019-01-15 12:45:24 +01:00
predictmodel <- predict ( model_lm , newdata = years , type = " response" , se.fit = TRUE )
2018-08-10 15:01:05 +02:00
prediction <- predictmodel $ fit
se <- predictmodel $ se.fit
2019-10-11 17:21:02 +02:00
} else if ( model %in% c ( " loglin" , " poisson" ) ) {
2019-01-15 12:45:24 +01:00
model <- " poisson"
model_lm <- with ( df , glm ( R ~ year , family = poisson ) )
2022-11-14 15:20:39 +01:00
if ( isTRUE ( info ) ) {
2019-10-11 17:21:02 +02:00
cat ( " \nLog-linear regression model (loglin) with poisson distribution" )
cat ( " \n--------------------------------------------------------------\n" )
2019-01-15 12:45:24 +01:00
print ( summary ( model_lm ) )
2018-08-10 15:01:05 +02:00
}
2022-08-28 10:31:50 +02:00
2019-01-15 12:45:24 +01:00
predictmodel <- predict ( model_lm , newdata = years , type = " response" , se.fit = TRUE )
2018-08-10 15:01:05 +02:00
prediction <- predictmodel $ fit
se <- predictmodel $ se.fit
2019-10-11 17:21:02 +02:00
} else if ( model %in% c ( " lin" , " linear" ) ) {
2019-01-15 12:45:24 +01:00
model <- " linear"
model_lm <- with ( df , lm ( ( R / ( R + S ) ) ~ year ) )
2022-11-14 15:20:39 +01:00
if ( isTRUE ( info ) ) {
2019-10-11 17:21:02 +02:00
cat ( " \nLinear regression model" )
cat ( " \n-----------------------\n" )
2019-01-15 12:45:24 +01:00
print ( summary ( model_lm ) )
2018-08-10 15:01:05 +02:00
}
2022-08-28 10:31:50 +02:00
2019-01-15 12:45:24 +01:00
predictmodel <- predict ( model_lm , newdata = years , se.fit = TRUE )
2018-08-10 15:01:05 +02:00
prediction <- predictmodel $ fit
se <- predictmodel $ se.fit
} else {
2024-06-15 15:33:49 +02:00
stop ( " no valid model selected. See `?resistance_predict`." )
2018-08-10 15:01:05 +02:00
}
2022-08-28 10:31:50 +02:00
2018-08-10 15:01:05 +02:00
# prepare the output dataframe
2022-08-28 10:31:50 +02:00
df_prediction <- data.frame (
year = unlist ( years ) ,
value = prediction ,
se_min = prediction - se ,
se_max = prediction + se ,
stringsAsFactors = FALSE
)
2019-10-11 17:21:02 +02:00
if ( model == " poisson" ) {
2020-05-16 13:05:47 +02:00
df_prediction $ value <- as.integer ( format ( df_prediction $ value , scientific = FALSE ) )
df_prediction $ se_min <- as.integer ( df_prediction $ se_min )
df_prediction $ se_max <- as.integer ( df_prediction $ se_max )
2018-08-10 15:01:05 +02:00
} else {
2020-05-16 13:05:47 +02:00
# se_max not above 1
2022-10-05 09:12:22 +02:00
df_prediction $ se_max <- pmin ( df_prediction $ se_max , 1 )
2018-08-10 15:01:05 +02:00
}
2020-05-16 13:05:47 +02:00
# se_min not below 0
2022-10-05 09:12:22 +02:00
df_prediction $ se_min <- pmax ( df_prediction $ se_min , 0 )
2022-08-28 10:31:50 +02:00
df_observations <- data.frame (
year = df $ year ,
observations = df $ R + df $ S ,
observed = df $ R / ( df $ R + df $ S ) ,
stringsAsFactors = FALSE
)
2023-02-09 13:07:39 +01:00
df_prediction <- df_prediction %pm>%
pm_left_join ( df_observations , by = " year" )
2020-05-16 13:05:47 +02:00
df_prediction $ estimated <- df_prediction $ value
2022-08-28 10:31:50 +02:00
2018-08-10 15:01:05 +02:00
if ( preserve_measurements == TRUE ) {
# replace estimated data by observed data
2020-05-16 13:05:47 +02:00
df_prediction $ value <- ifelse ( ! is.na ( df_prediction $ observed ) , df_prediction $ observed , df_prediction $ value )
df_prediction $ se_min <- ifelse ( ! is.na ( df_prediction $ observed ) , NA , df_prediction $ se_min )
df_prediction $ se_max <- ifelse ( ! is.na ( df_prediction $ observed ) , NA , df_prediction $ se_max )
2018-08-10 15:01:05 +02:00
}
2022-08-28 10:31:50 +02:00
2022-10-05 09:12:22 +02:00
df_prediction $ value <- ifelse ( df_prediction $ value > 1 , 1 , pmax ( df_prediction $ value , 0 ) )
2022-08-27 20:49:37 +02:00
df_prediction <- df_prediction [order ( df_prediction $ year ) , , drop = FALSE ]
2022-08-28 10:31:50 +02:00
2023-01-23 15:01:21 +01:00
out <- as_original_data_class ( df_prediction , class ( x.bak ) ) # will remove tibble groups
2022-08-27 20:49:37 +02:00
structure ( out ,
2022-08-28 10:31:50 +02:00
class = c ( " resistance_predict" , class ( out ) ) ,
I_as_S = I_as_S ,
model_title = model ,
model = model_lm ,
ab = col_ab
2019-01-15 12:45:24 +01:00
)
}
#' @rdname resistance_predict
#' @export
2023-01-21 23:47:20 +01:00
sir_predict <- resistance_predict
2019-01-15 12:45:24 +01:00
2020-05-28 16:48:55 +02:00
#' @method plot resistance_predict
2019-01-15 12:45:24 +01:00
#' @export
2020-09-25 14:44:50 +02:00
#' @importFrom graphics plot axis arrows points
2019-01-15 12:45:24 +01:00
#' @rdname resistance_predict
2019-05-13 20:16:51 +02:00
plot.resistance_predict <- function ( x , main = paste ( " Resistance Prediction of" , x_name ) , ... ) {
x_name <- paste0 ( ab_name ( attributes ( x ) $ ab ) , " (" , attributes ( x ) $ ab , " )" )
2020-10-19 17:09:19 +02:00
meet_criteria ( main , allow_class = " character" , has_length = 1 )
2022-08-28 10:31:50 +02:00
2019-05-13 16:35:48 +02:00
if ( attributes ( x ) $ I_as_S == TRUE ) {
2019-01-15 12:45:24 +01:00
ylab <- " %R"
2019-05-13 16:35:48 +02:00
} else {
ylab <- " %IR"
2018-08-10 15:01:05 +02:00
}
2022-08-28 10:31:50 +02:00
plot (
x = x $ year ,
y = x $ value ,
ylim = c ( 0 , 1 ) ,
yaxt = " n" , # no y labels
pch = 19 , # closed dots
ylab = paste0 ( " Percentage (" , ylab , " )" ) ,
xlab = " Year" ,
main = main ,
sub = paste0 (
" (n = " , sum ( x $ observations , na.rm = TRUE ) ,
" , model: " , attributes ( x ) $ model_title , " )"
) ,
cex.sub = 0.75
)
2019-01-15 12:45:24 +01:00
axis ( side = 2 , at = seq ( 0 , 1 , 0.1 ) , labels = paste0 ( 0 : 10 * 10 , " %" ) )
2022-08-28 10:31:50 +02:00
2019-02-11 10:27:10 +01:00
# hack for error bars: https://stackoverflow.com/a/22037078/4575331
2022-08-28 10:31:50 +02:00
arrows (
x0 = x $ year ,
y0 = x $ se_min ,
x1 = x $ year ,
y1 = x $ se_max ,
length = 0.05 , angle = 90 , code = 3 , lwd = 1.5
)
2019-02-11 10:27:10 +01:00
# overlay grey points for prediction
2022-08-28 10:31:50 +02:00
points (
x = subset ( x , is.na ( observations ) ) $ year ,
y = subset ( x , is.na ( observations ) ) $ value ,
pch = 19 ,
col = " grey40"
)
2018-08-10 15:01:05 +02:00
}
#' @rdname resistance_predict
#' @export
2023-01-21 23:47:20 +01:00
ggplot_sir_predict <- function ( x ,
2019-05-13 20:16:51 +02:00
main = paste ( " Resistance Prediction of" , x_name ) ,
2019-02-11 10:27:10 +01:00
ribbon = TRUE ,
... ) {
2020-10-19 17:09:19 +02:00
x_name <- paste0 ( ab_name ( attributes ( x ) $ ab ) , " (" , attributes ( x ) $ ab , " )" )
meet_criteria ( main , allow_class = " character" , has_length = 1 )
meet_criteria ( ribbon , allow_class = " logical" , has_length = 1 )
2022-08-28 10:31:50 +02:00
2020-06-22 11:18:40 +02:00
stop_ifnot_installed ( " ggplot2" )
stop_ifnot ( inherits ( x , " resistance_predict" ) , " `x` must be a resistance prediction model created with resistance_predict()" )
2022-08-28 10:31:50 +02:00
2019-05-13 16:35:48 +02:00
if ( attributes ( x ) $ I_as_S == TRUE ) {
2019-01-15 12:45:24 +01:00
ylab <- " %R"
2019-05-13 16:35:48 +02:00
} else {
ylab <- " %IR"
2019-01-15 12:45:24 +01:00
}
2022-08-28 10:31:50 +02:00
p <- ggplot2 :: ggplot (
as.data.frame ( x , stringsAsFactors = FALSE ) ,
ggplot2 :: aes ( x = year , y = value )
) +
ggplot2 :: geom_point (
data = subset ( x , ! is.na ( observations ) ) ,
size = 2
) +
2019-02-11 10:27:10 +01:00
scale_y_percent ( limits = c ( 0 , 1 ) ) +
2022-08-28 10:31:50 +02:00
ggplot2 :: labs (
title = main ,
y = paste0 ( " Percentage (" , ylab , " )" ) ,
x = " Year" ,
caption = paste0 (
" (n = " , sum ( x $ observations , na.rm = TRUE ) ,
" , model: " , attributes ( x ) $ model_title , " )"
)
)
2019-02-11 10:27:10 +01:00
if ( ribbon == TRUE ) {
p <- p + ggplot2 :: geom_ribbon ( ggplot2 :: aes ( ymin = se_min , ymax = se_max ) , alpha = 0.25 )
} else {
p <- p + ggplot2 :: geom_errorbar ( ggplot2 :: aes ( ymin = se_min , ymax = se_max ) , na.rm = TRUE , width = 0.5 )
}
p <- p +
# overlay grey points for prediction
2022-08-28 10:31:50 +02:00
ggplot2 :: geom_point (
data = subset ( x , is.na ( observations ) ) ,
size = 2 ,
colour = " grey40"
)
2019-02-11 10:27:10 +01:00
p
2019-01-15 12:45:24 +01:00
}
2021-06-14 22:04:04 +02:00
2021-07-12 20:24:49 +02:00
#' @method autoplot resistance_predict
2021-06-14 22:04:04 +02:00
#' @rdname resistance_predict
# will be exported using s3_register() in R/zzz.R
2021-07-12 20:24:49 +02:00
autoplot.resistance_predict <- function ( object ,
main = paste ( " Resistance Prediction of" , x_name ) ,
ribbon = TRUE ,
... ) {
x_name <- paste0 ( ab_name ( attributes ( object ) $ ab ) , " (" , attributes ( object ) $ ab , " )" )
2021-06-14 22:04:04 +02:00
meet_criteria ( main , allow_class = " character" , has_length = 1 )
meet_criteria ( ribbon , allow_class = " logical" , has_length = 1 )
2023-01-21 23:47:20 +01:00
ggplot_sir_predict ( x = object , main = main , ribbon = ribbon , ... )
2021-06-14 22:04:04 +02:00
}
2021-07-12 20:24:49 +02:00
#' @method fortify resistance_predict
#' @noRd
2021-06-14 22:04:04 +02:00
# will be exported using s3_register() in R/zzz.R
2021-07-12 20:24:49 +02:00
fortify.resistance_predict <- function ( model , data , ... ) {
as.data.frame ( model )
}