1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-25 05:04:37 +01:00
AMR/R/bug_drug_combinations.R

256 lines
12 KiB
R
Raw Normal View History

2019-08-25 22:53:22 +02:00
# ==================================================================== #
# TITLE #
# Antimicrobial Resistance (AMR) Data Analysis for R #
2019-08-25 22:53:22 +02:00
# #
# SOURCE #
2020-07-08 14:48:06 +02:00
# https://github.com/msberends/AMR #
2019-08-25 22:53:22 +02:00
# #
# LICENCE #
2020-12-27 00:30:28 +01:00
# (c) 2018-2021 Berends MS, Luz CF et al. #
2020-10-08 11:16:03 +02:00
# Developed at the University of Groningen, the Netherlands, in #
# collaboration with non-profit organisations Certe Medical #
# Diagnostics & Advice, and University Medical Center Groningen. #
2019-08-25 22:53:22 +02:00
# #
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
2020-10-08 11:16:03 +02:00
# #
# Visit our website for the full manual and a complete tutorial about #
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
2019-08-25 22:53:22 +02:00
# ==================================================================== #
#' Determine Bug-Drug Combinations
2019-08-25 22:53:22 +02:00
#'
#' Determine antimicrobial resistance (AMR) of all bug-drug combinations in your data set where at least 30 (default) isolates are available per species. Use [format()] on the result to prettify it to a publicable/printable format, see *Examples*.
#' @inheritSection lifecycle Stable Lifecycle
2019-08-25 22:53:22 +02:00
#' @inheritParams eucast_rules
2019-08-27 19:15:04 +02:00
#' @param combine_IR logical to indicate whether values R and I should be summed
2019-08-27 22:41:09 +02:00
#' @param add_ab_group logical to indicate where the group of the antimicrobials must be included as a first column
#' @param remove_intrinsic_resistant logical to indicate that rows and columns with 100% resistance for all tested antimicrobials must be removed from the table
#' @param FUN function to call on the `mo` column to transform the microorganism IDs, defaults to [mo_shortname()]
#' @param translate_ab character of length 1 containing column names of the [antibiotics] data set
#' @param ... arguments passed on to `FUN`
2019-08-25 22:53:22 +02:00
#' @inheritParams rsi_df
2019-09-23 13:53:50 +02:00
#' @inheritParams base::formatC
#' @details The function [format()] calculates the resistance per bug-drug combination. Use `combine_IR = FALSE` (default) to test R vs. S+I and `combine_IR = TRUE` to test R+I vs. S.
2019-08-25 22:53:22 +02:00
#' @export
2019-08-27 22:41:09 +02:00
#' @rdname bug_drug_combinations
#' @return The function [bug_drug_combinations()] returns a [data.frame] with columns "mo", "ab", "S", "I", "R" and "total".
#' @source \strong{M39 Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, 4th Edition}, 2014, *Clinical and Laboratory Standards Institute (CLSI)*. <https://clsi.org/standards/products/microbiology/documents/m39/>.
#' @inheritSection AMR Read more on Our Website!
2019-08-25 22:53:22 +02:00
#' @examples
#' \donttest{
#' x <- bug_drug_combinations(example_isolates)
2019-08-25 22:53:22 +02:00
#' x
2019-10-11 17:21:02 +02:00
#' format(x, translate_ab = "name (atc)")
2019-09-23 13:53:50 +02:00
#'
#' # Use FUN to change to transformation of microorganism codes
#' bug_drug_combinations(example_isolates,
#' FUN = mo_gramstain)
2019-09-23 13:53:50 +02:00
#'
#' bug_drug_combinations(example_isolates,
#' FUN = function(x) ifelse(x == as.mo("E. coli"),
#' "E. coli",
#' "Others"))
2019-08-25 22:53:22 +02:00
#' }
2019-09-23 13:53:50 +02:00
bug_drug_combinations <- function(x,
col_mo = NULL,
FUN = mo_shortname,
...) {
meet_criteria(x, allow_class = "data.frame", contains_column_class = "rsi")
meet_criteria(col_mo, allow_class = "character", is_in = colnames(x), has_length = 1, allow_NULL = TRUE)
meet_criteria(FUN, allow_class = "function", has_length = 1)
2019-08-25 22:53:22 +02:00
# try to find columns based on type
# -- mo
if (is.null(col_mo)) {
col_mo <- search_type_in_df(x = x, type = "mo")
2021-01-15 22:44:52 +01:00
stop_if(is.null(col_mo), "`col_mo` must be set")
} else {
stop_ifnot(col_mo %in% colnames(x), "column '", col_mo, "' (`col_mo`) not found")
2019-08-25 22:53:22 +02:00
}
2020-06-17 15:14:37 +02:00
x_class <- class(x)
2020-05-18 13:59:34 +02:00
x <- as.data.frame(x, stringsAsFactors = FALSE)
x[, col_mo] <- FUN(x[, col_mo, drop = TRUE], ...)
x <- x[, c(col_mo, names(which(vapply(FUN.VALUE = logical(1), x, is.rsi)))), drop = FALSE]
2020-05-18 13:59:34 +02:00
unique_mo <- sort(unique(x[, col_mo, drop = TRUE]))
2020-07-13 09:17:24 +02:00
out <- data.frame(mo = character(0),
ab = character(0),
S = integer(0),
I = integer(0),
R = integer(0),
total = integer(0),
stringsAsFactors = FALSE)
2020-07-13 09:17:24 +02:00
2020-05-18 13:59:34 +02:00
for (i in seq_len(length(unique_mo))) {
# filter on MO group and only select R/SI columns
x_mo_filter <- x[which(x[, col_mo, drop = TRUE] == unique_mo[i]), names(which(vapply(FUN.VALUE = logical(1), x, is.rsi))), drop = FALSE]
2020-05-18 13:59:34 +02:00
# turn and merge everything
pivot <- lapply(x_mo_filter, function(x) {
m <- as.matrix(table(x))
data.frame(S = m["S", ], I = m["I", ], R = m["R", ], stringsAsFactors = FALSE)
})
merged <- do.call(rbind, pivot)
out_group <- data.frame(mo = unique_mo[i],
ab = rownames(merged),
S = merged$S,
I = merged$I,
R = merged$R,
total = merged$S + merged$I + merged$R,
stringsAsFactors = FALSE)
out <- rbind(out, out_group, stringsAsFactors = FALSE)
2020-05-16 13:05:47 +02:00
}
2020-07-13 09:17:24 +02:00
set_clean_class(out,
new_class = c("bug_drug_combinations", x_class))
2019-08-25 22:53:22 +02:00
}
2020-05-28 16:48:55 +02:00
#' @method format bug_drug_combinations
2019-08-25 22:53:22 +02:00
#' @export
2019-08-27 22:41:09 +02:00
#' @rdname bug_drug_combinations
2019-09-25 15:43:22 +02:00
format.bug_drug_combinations <- function(x,
translate_ab = "name (ab, atc)",
language = get_locale(),
minimum = 30,
combine_SI = TRUE,
combine_IR = FALSE,
2019-09-23 13:53:50 +02:00
add_ab_group = TRUE,
2019-09-25 15:43:22 +02:00
remove_intrinsic_resistant = FALSE,
2019-09-23 13:53:50 +02:00
decimal.mark = getOption("OutDec"),
2019-09-23 14:37:24 +02:00
big.mark = ifelse(decimal.mark == ",", ".", ","),
...) {
meet_criteria(x, allow_class = "data.frame")
meet_criteria(translate_ab, allow_class = c("character", "logical"), has_length = 1, allow_NA = TRUE)
meet_criteria(language, has_length = 1, is_in = c(LANGUAGES_SUPPORTED, ""), allow_NULL = TRUE, allow_NA = TRUE)
meet_criteria(minimum, allow_class = c("numeric", "integer"), has_length = 1, is_positive = TRUE, is_finite = TRUE)
meet_criteria(combine_SI, allow_class = "logical", has_length = 1)
meet_criteria(combine_IR, allow_class = "logical", has_length = 1)
meet_criteria(add_ab_group, allow_class = "logical", has_length = 1)
meet_criteria(remove_intrinsic_resistant, allow_class = "logical", has_length = 1)
meet_criteria(decimal.mark, allow_class = "character", has_length = 1)
meet_criteria(big.mark, allow_class = "character", has_length = 1)
2020-06-17 15:14:37 +02:00
x <- as.data.frame(x, stringsAsFactors = FALSE)
2020-05-18 13:59:34 +02:00
x <- subset(x, total >= minimum)
2019-09-25 15:43:22 +02:00
if (remove_intrinsic_resistant == TRUE) {
2020-05-18 13:59:34 +02:00
x <- subset(x, R != total)
2019-09-25 15:43:22 +02:00
}
2019-10-11 17:21:02 +02:00
if (combine_SI == TRUE | combine_IR == FALSE) {
2019-08-25 22:53:22 +02:00
x$isolates <- x$R
} else {
x$isolates <- x$R + x$I
}
2019-09-25 15:43:22 +02:00
give_ab_name <- function(ab, format, language) {
format <- tolower(format)
ab_txt <- rep(format, length(ab))
2019-10-11 17:21:02 +02:00
for (i in seq_len(length(ab_txt))) {
ab_txt[i] <- gsub("ab", as.character(as.ab(ab[i])), ab_txt[i])
2019-09-25 15:43:22 +02:00
ab_txt[i] <- gsub("cid", ab_cid(ab[i]), ab_txt[i])
ab_txt[i] <- gsub("group", ab_group(ab[i], language = language), ab_txt[i])
ab_txt[i] <- gsub("atc_group1", ab_atc_group1(ab[i], language = language), ab_txt[i])
ab_txt[i] <- gsub("atc_group2", ab_atc_group2(ab[i], language = language), ab_txt[i])
ab_txt[i] <- gsub("atc", ab_atc(ab[i]), ab_txt[i])
ab_txt[i] <- gsub("name", ab_name(ab[i], language = language), ab_txt[i])
ab_txt[i]
}
ab_txt
}
2019-11-11 10:46:39 +01:00
2020-05-16 13:05:47 +02:00
remove_NAs <- function(.data) {
2020-05-18 13:59:34 +02:00
cols <- colnames(.data)
.data <- as.data.frame(lapply(.data, function(x) ifelse(is.na(x), "", x)),
stringsAsFactors = FALSE)
2020-05-18 13:59:34 +02:00
colnames(.data) <- cols
.data
2020-05-16 13:05:47 +02:00
}
create_var <- function(.data, ...) {
dots <- list(...)
for (i in seq_len(length(dots))) {
.data[, names(dots)[i]] <- dots[[i]]
}
.data
}
y <- x %pm>%
2020-05-16 13:05:47 +02:00
create_var(ab = as.ab(x$ab),
ab_txt = give_ab_name(ab = x$ab, format = translate_ab, language = language)) %pm>%
pm_group_by(ab, ab_txt, mo) %pm>%
pm_summarise(isolates = sum(isolates, na.rm = TRUE),
total = sum(total, na.rm = TRUE)) %pm>%
pm_ungroup()
2020-05-16 13:05:47 +02:00
y <- y %pm>%
2020-05-16 13:05:47 +02:00
create_var(txt = paste0(percentage(y$isolates / y$total, decimal.mark = decimal.mark, big.mark = big.mark),
2020-07-13 09:17:24 +02:00
" (", trimws(format(y$isolates, big.mark = big.mark)), "/",
trimws(format(y$total, big.mark = big.mark)), ")")) %pm>%
pm_select(ab, ab_txt, mo, txt) %pm>%
pm_arrange(mo)
2020-07-13 09:17:24 +02:00
2020-05-18 13:59:34 +02:00
# replace tidyr::pivot_wider() from here
for (i in unique(y$mo)) {
mo_group <- y[which(y$mo == i), c("ab", "txt")]
colnames(mo_group) <- c("ab", i)
rownames(mo_group) <- NULL
y <- y %pm>%
pm_left_join(mo_group, by = "ab")
2020-05-18 13:59:34 +02:00
}
y <- y %pm>%
pm_distinct(ab, .keep_all = TRUE) %pm>%
pm_select(-mo, -txt) %pm>%
2020-05-18 13:59:34 +02:00
# replace tidyr::pivot_wider() until here
2020-05-16 13:05:47 +02:00
remove_NAs()
2020-05-16 13:05:47 +02:00
select_ab_vars <- function(.data) {
.data[, c("ab_group", "ab_txt", colnames(.data)[!colnames(.data) %in% c("ab_group", "ab_txt", "ab")])]
}
2020-07-13 09:17:24 +02:00
y <- y %pm>%
create_var(ab_group = ab_group(y$ab, language = language)) %pm>%
select_ab_vars() %pm>%
pm_arrange(ab_group, ab_txt)
y <- y %pm>%
2020-09-19 11:54:01 +02:00
create_var(ab_group = ifelse(y$ab_group != pm_lag(y$ab_group) | is.na(pm_lag(y$ab_group)), y$ab_group, ""))
2020-07-13 09:17:24 +02:00
2019-08-25 22:53:22 +02:00
if (add_ab_group == FALSE) {
y <- y %pm>%
pm_select(-ab_group) %pm>%
pm_rename("Drug" = ab_txt)
colnames(y)[1] <- translate_AMR(colnames(y)[1], language, only_unknown = FALSE)
2019-09-23 13:53:50 +02:00
} else {
y <- y %pm>%
pm_rename("Group" = ab_group,
"Drug" = ab_txt)
}
if (!is.null(language)) {
colnames(y) <- translate_AMR(colnames(y), language, only_unknown = FALSE)
}
if (remove_intrinsic_resistant == TRUE) {
y <- y[, !vapply(FUN.VALUE = logical(1), y, function(col) all(col %like% "100", na.rm = TRUE) & !any(is.na(col))), drop = FALSE]
2019-08-25 22:53:22 +02:00
}
2020-05-18 13:59:34 +02:00
rownames(y) <- NULL
2019-08-25 22:53:22 +02:00
y
}
2020-05-28 16:48:55 +02:00
#' @method print bug_drug_combinations
2019-08-25 22:53:22 +02:00
#' @export
2019-08-27 22:41:09 +02:00
print.bug_drug_combinations <- function(x, ...) {
2020-06-17 15:14:37 +02:00
x_class <- class(x)
print(set_clean_class(x,
new_class = x_class[x_class != "bug_drug_combinations"]),
2020-06-17 15:14:37 +02:00
...)
2020-10-27 15:56:51 +01:00
message_("Use 'format()' on this result to get a publishable/printable format.", as_note = FALSE)
2019-08-25 22:53:22 +02:00
}