1
0
mirror of https://github.com/msberends/AMR.git synced 2025-01-12 12:51:38 +01:00
AMR/inst/tinytest/test-episode.R

70 lines
3.2 KiB
R
Raw Normal View History

# ==================================================================== #
# TITLE #
2022-10-05 09:12:22 +02:00
# AMR: An R Package for Working with Antimicrobial Resistance Data #
# #
2019-01-02 23:24:07 +01:00
# SOURCE #
2020-07-08 14:48:06 +02:00
# https://github.com/msberends/AMR #
# #
2022-10-05 09:12:22 +02:00
# CITE AS #
# Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C #
# (2022). AMR: An R Package for Working with Antimicrobial Resistance #
# Data. Journal of Statistical Software, 104(3), 1-31. #
# doi:10.18637/jss.v104.i03 #
# #
2022-12-27 15:16:15 +01:00
# Developed at the University of Groningen and the University Medical #
# Center Groningen in The Netherlands, in collaboration with many #
# colleagues from around the world, see our website. #
# #
2019-01-02 23:24:07 +01:00
# This R package is free software; you can freely use and distribute #
# it for both personal and commercial purposes under the terms of the #
# GNU General Public License version 2.0 (GNU GPL-2), as published by #
# the Free Software Foundation. #
# We created this package for both routine data analysis and academic #
# research and it was publicly released in the hope that it will be #
# useful, but it comes WITHOUT ANY WARRANTY OR LIABILITY. #
2020-10-08 11:16:03 +02:00
# #
# Visit our website for the full manual and a complete tutorial about #
# how to conduct AMR data analysis: https://msberends.github.io/AMR/ #
# ==================================================================== #
2021-05-15 21:36:22 +02:00
test_df <- rbind(
data.frame(
date = as.Date(c("2015-01-01", "2015-10-01", "2016-02-04", "2016-12-31", "2017-01-01", "2017-02-01", "2017-02-05", "2020-01-01")),
patient_id = "A"
),
data.frame(
date = as.Date(c("2015-01-01", "2016-02-01", "2016-12-31", "2017-01-01", "2017-02-03")),
patient_id = "B"
2022-08-28 10:31:50 +02:00
)
)
2018-07-08 22:14:55 +02:00
2022-08-28 10:31:50 +02:00
expect_equal(
get_episode(test_df$date, 365),
c(1, 1, 2, 2, 2, 3, 3, 4, 1, 2, 2, 2, 3)
)
expect_equal(
get_episode(test_df$date[which(test_df$patient_id == "A")], 365),
c(1, 1, 2, 2, 2, 2, 3, 4)
)
expect_equal(
get_episode(test_df$date[which(test_df$patient_id == "B")], 365),
c(1, 2, 2, 2, 3)
)
2021-05-15 21:36:22 +02:00
2021-10-05 09:58:08 +02:00
if (AMR:::pkg_is_available("dplyr", min_version = "1.0.0")) {
2022-08-28 10:31:50 +02:00
expect_identical(
test_df %>% group_by(patient_id) %>% mutate(f = is_new_episode(date, 365)) %>% pull(f),
c(TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE)
)
2021-05-15 21:36:22 +02:00
suppressMessages(
x <- example_isolates %>%
mutate(out = first_isolate(., include_unknown = TRUE, method = "episode-based", info = FALSE))
)
y <- example_isolates %>%
2022-08-27 20:49:37 +02:00
group_by(patient, mo) %>%
2021-05-15 21:36:22 +02:00
mutate(out = is_new_episode(date, 365))
2022-08-28 10:31:50 +02:00
2021-05-15 21:36:22 +02:00
expect_identical(which(x$out), which(y$out))
}