#' This algorithm is used by [as.mo()] and all the [`mo_*`][mo_property()] functions to determine the most probable match of taxonomic records based on user input.
#' @note This algorithm was originally described in: Berends MS *et al.* (2022). **AMR: An R Package for Working with Antimicrobial Resistance Data**. *Journal of Statistical Software*, 104(3), 1-31; \doi{10.18637/jss.v104.i03}.
#'
#' Later, the work of Bartlett A *et al.* about bacterial pathogens infecting humans (2022, \doi{10.1099/mic.0.001269}) was incorporated.
#' With ambiguous user input in [as.mo()] and all the [`mo_*`][mo_property()] functions, the returned results are chosen based on their matching score using [mo_matching_score()]. This matching score \eqn{m}, is calculated as:
#' * \eqn{n} is a taxonomic name (genus, species, and subspecies);
#' * \eqn{l_n} is the length of \eqn{n};
#' * \eqn{lev} is the [Levenshtein distance function](https://en.wikipedia.org/wiki/Levenshtein_distance) (counting any insertion as 1, and any deletion or substitution as 2) that is needed to change \eqn{x} into \eqn{n};
#' * \eqn{p_{n}} is the human pathogenic prevalence group of \eqn{n}, as described below;
#' * \eqn{k_n} is the taxonomic kingdom of \eqn{n}, set as Bacteria = 1, Fungi = 2, Protozoa = 3, Archaea = 4, others = 5.
#' The grouping into human pathogenic prevalence \eqn{p} is based on recent work from Bartlett *et al.* (2022, \doi{10.1099/mic.0.001269}) who extensively studied medical-scientific literature to categorise all bacterial species into these groups:
#' - **Established**, if a taxonomic species has infected at least three persons in three or more references. These records have `prevalence = 1.0` in the [microorganisms] data set;
#' - **Putative**, if a taxonomic species has fewer than three known cases. These records have `prevalence = 1.25` in the [microorganisms] data set.
#' - Any genus present in the **established** list also has `prevalence = 1.0` in the [microorganisms] data set;
#' - Any other genus present in the **putative** list has `prevalence = 1.25` in the [microorganisms] data set;
#' - Any other species or subspecies of which the genus is present in the two aforementioned groups, has `prevalence = 1.5` in the [microorganisms] data set;
#' - Any *non-bacterial* genus, species or subspecies of which the genus is present in the following list, has `prevalence = 1.5` in the [microorganisms] data set: `r vector_or(MO_PREVALENT_GENERA, quotes = "*")`;
#' - All other records have `prevalence = 2.0` in the [microorganisms] data set.
#' All matches are sorted descending on their matching score and for all user input values, the top match will be returned. This will lead to the effect that e.g., `"E. coli"` will return the microbial ID of *Escherichia coli* (\eqn{m = `r round(mo_matching_score("E. coli", "Escherichia coli"), 3)`}, a highly prevalent microorganism found in humans) and not *Entamoeba coli* (\eqn{m = `r round(mo_matching_score("E. coli", "Entamoeba coli"), 3)`}, a less prevalent microorganism in humans), although the latter would alphabetically come first.